TABLE OF CONTENTS

	Page
Dedication, Acknowledgements, Thanks and Appreciation	iii
Abstract	vi
Edward Locke's Résumé	viii
Table of Contents	X
List of Tables	xvi
List of Figures	xvii
CHAPTER 1 INTRODUCTION	1
1.1 The Evolution of Descriptive Geometry	2
1.1.1 Traditional 2D Drafting Technologies and its Application in	
Descriptive Geometry	2
1.1.2 3D CAD Modeling Technologies and its Potential Impact on	
1.2 The Need to Undete Descriptive Geometry with Three	2
Dimensional CAD Technology	3
1.2.1 The Need for an Extensive Infusion of the Most Current 3D	
Technology into the Traditional Subject of Descriptive Geometry	
Professional Practices	3
1.2.2 The Need for Teaching and Learning Materials in the	
Curriculum of Descriptive Geometry Incorporating the Most	
Current Technology of 3D Parametric Modeling	6
1.2.3 Shortage of Available Textbooks on Solving Descriptive Geometry Problem Using 3D Parametric Modeling	
Technology	6
1.3 The Purpose of This Collection of Teaching and Learning Modules	7
1.4 Organization and Limitation of the Project	7
1.4.1 Basic Format of the Project	7

1.4.2 Organization of the Study	8
1.4.2.1 The Thesis Component	8
1.4.2.2 The Textbook Component	8
1.4.3 Limitation of the Project	9
1.4.4 AutoCAD-Based Textbook Topics and Expected	
Student Competencies	9
1.4.5 Inclusion of Autodesk Inventor 3D Parametric Modeling	
Technology in the Project	10
1.5 Definition and Abbreviations of Terms	11
CHAPTER 2 REVIEW OF THE LITERATURE	17
2.1 Historical Overview: The Methods of Descriptive Geometry	17
2.1.1 The Origin of the Science of Descriptive Geometry	17
2.1.2 The Inclusion of Descriptive Geometry in Engineering Curriculum	18
2.1.3 The Evolution of the Technology Used in the Solution of Descriptive Geometry Problems	18
2.2 Textbooks and Internet Resources on Descriptive Geometry and	
Related Subjects: An Evaluative Overview	19
2.2.1 Textbooks on Engineering Descriptive Geometry	
Theory and Practices	19
2.2.1.1 Original Textbooks Written in French by Gaspard Monge, the Inventor of Descriptive Geometry Methods, and Found in the CSU Library System	19
2.2.1.2 Textbooks on Descriptive Geometry with Traditional Manual Drafting Methods	20
2.2.1.3 Textbooks on Descriptive Geometry with AutoCAD	_0
2D Drafting Methods	20
2.2.1.4 Internet Resources on Descriptive Geometry	21
2.2.2 Textbooks and Internet Resources on Sheet-Metal Flat Pattern Layout, Fabrication and Trade Practices	21

2.2.2.1 Textbooks on Sheet-Metal Trade	•••••	22
2.2.2.2 Internet Resources on Sheet-Metal Trade		24
2.2.3 Literature on Platonic and Archimedean Solids and		
Other Polyhedrons		24
2.2.3.1 Textbook on Platonic and Archimedean Solids and		
Other Polyhedrons	••••	24
2.2.3.2 Internet Resources on Platonic and Archimedean S	olids	
and Other Polyhedrons		25
2.3 Conclusion		26
CHAPTER 3 CAD TECHNOLOGY & APPLICATIONS IN ENGINEERI DRAFTING PRACTICES AND DESCRIPTIVE GEOMETRY	NG	
PROBLEM SOLUTIONS	•••••	27
3.1 Two Major Categories of CAD/CAM Programs (Design-Centric a	ind	
Process-Centric), and Their Application in Descriptive Geometry	1	
Problem Solution		27
3.1.1 The "Design-Centric" CAD Programs: Solutions for		
Engineering Design	••••••	27
3.1.2 The "Process-Centric" CAD Programs: "Total Solutions"	for	- '
Engineering Design, Testing/Simulation, Manufacturing		
and Management	•••••	28
3.2 The Evolution of Computer -Assisted Drafting (CAD) Technolog its Impact on Engineering Drafting Practice	y and	28
3.2.1 The Evolution of CAD Standards and its Impact on the Sci of Descriptive Geometry in Engineering Design Applicatio	ience ns	29
3.2.2 Significant Impact of the 3D Modeling Technology on Engineering Drafting and Design		30
3.3 Capabilities of Major CAD Programs For Solving Descriptive		
Geometry Problems	•••••	31

3.3.1 Low-End to Mid-Range CAD Programs: the Autodesk Family (AutoCAD, Mechanical Desktop, Inventor,	
3D StudioMAX and 3D VIZ	31
3.3.1.1 The Autodesk Family CAD Products	31
3.3.1.2 Autodesk's Acquisition of Alias: an Entry	
into the High-End 3D Modeling Market (in Consumer Product Design, Automobile Styling and Other Fields)	34
3.3.2 Mid-Range 3D Parametric CAD Programs: SolidEdge	
and SolidWorks	36
3.3.3 High-End 3D Parametric CAD Programs: CATIA, Unigraphic	
and ProEngineer/ProSheet-Metal	36
3.4 Professional Sheet-Metal Design and Fabrication Software Programs	38
3.4.1 Sheet-Metal Design Software and Plug-ins	38
3.4.2 Contact Information of Sheet-Metal Design Software	
and Plug-ins Makers	38
3.5 3D Modeling of Plutonic Solids, Other Polyhedrons &	
Polyhedral Stars	39
3.5.1 Generic 3D Modelers	39
3.5.2 Mathematics Software Programs	39
3.5.3 Special 3D Polyhedron Modelers	39
CHAPTER 4 CAD TECHNOLOGY AND ITS APPLICATION IN ENGINEERING DRAFTING AND DESCRIPTIVE GEOMETRY CURRICULUM	13
4.1 The Application of CAD Technology in Descriptive Geometry Curriculum and Engineering Design Practice	43
4.1.1 For Learning the Theory of Orthographic Projection in	-тЈ
2D Drafting	12
4.1.2 For Learning the More Efficient Methods of Solving	43
Descriptive Geometry Problems in 3D Modeling Environment	50

4.2 CAD and Descriptive Geometry Education at Community Colleges in	
Southern California	54
4.2.1 Stand-Alone Descriptive Geometry Courses	55
4.2.2 Descriptive Geometry as Part of Engineering Drafting Courses	55
CHAPTER 5 CONCLUSIONS & RECOMMENDATIONS	57
5.1 Post-Study Classroom Testing	57
5.1.1 Classroom Testing at Santa Ana College	57
5.1.2 Classroom Testing at Other Local Community Colleges and	
Universities in Southern California	58
5.2 Measurement of Expected Student Competencies	58
5.3 Recommendation for the Development of Further Materials Based	
on Industry & Academic Surveys	59
5.3.1 Academic Surveys	59
5.3.2 Business Surveys	60
5.4 Conclusion	60
BIBLIOGRAPHY	61
APPENDICES	63
A. The Career of Gaspard Monge and the Origin of Descriptive Geometry	63
B. List of Reference Books on Descriptive Geometry and Sheet-Metal	
Trade at CSULA John F. Kennedy Memorial Library	68
C. The Application of CAD/CAM & Simulation/Analysis Programs in Industry & Educational Institutions	74
D. Integration of CAD/CAM Technology and Engineering/Technical Education Programs At Community Colleges in Southern California	131
E. Post-Study Survey Forms and Lists	155
F. List of Websites on Sheet-metal Design and Fabrication	163
G. Descriptive Geometry with Autodesk AutoCAD, A Collection of	
Step-by-Step Learning Modules for Engineering Students	164*

Н	I. Descriptive Geometry with Autodesk Inventor, A Collection of	
	Step-by-Step Learning Modules for Mechanical Engineering Students	517**
I.	Instructor's Resource	Folder
J.	Student's Resource	Folder
oto		

Note:

* Appendix G uses a special page number system with prefixes that correspond to the number of the modules.

** Appendix H uses a special page number system with prefixes that correspond to the number of the modules.

LIST OF TABLES

Table 1.	Proposed Graphics Outcome Average Rank	6
Table 2.	Autodesk Family Programs and Descriptive Geometry	31
Table 3.	CAD Programs and Descriptive Geometry Problem Solution Capabilities	37
Table 4A.	Sheet-Metal Design and Fabrication Software and Their Application	
	in 3D CAPrograms	38
Table 4B.	Sheet-Metal Design and Fabrication Software Maker Contact Information	38
Table 5.	Descriptive Geometry Education at Community Colleges	
	in Southern California	55

LIST OF FIGURES

Figure 1. Sheet-metal folded model and developed flat pattern	
created in Inventor	33
Figure 2. Polyhedron frames with Show Edges and Show Vertices on, 3D net, and flat net pattern	40
Figure 3. A dodecahedron with Show Symmetry Axis and Show Reflection Planes, Show Edges and Show Vertices all on, and Rainbow Color Mode selected and 3D net model	41
Figure 4. Determination of visibility of lines	44
Figure 5. Dihedral angle	44
Figure 6. True shape of a plane (primary and secondary auxiliary views)	45
Figure 7. Piercing point	45
Figure 8. Locating a point on a plane	45
Figure 9. Shortest distance	46
Figure 10. Angle between a line and a plane	46
Figure 11. Parallel-line development	47
Figure 12. Approximate development of sphere	
(Gore or poly-cylindrical method)	47
Figure 13. Approximate development of sphere (poly-conic method)	48
Figure 14. Radial-line development of a cone	48
Figure 15. Radial-line development of a pyramid	49
Figure 16. Triangulation development of the lateral transition piece	
between a square and circular tubes	49
Figure 17. Triangulation development of the lateral transition piece	
between a two square tubes	50
Figure 18. Development of the lateral piece of a truncated cylinder	51
Figure 19. Development of a truncated prism	51
Figure 20. Development of an interested cone	51
Figure 21. Measuring the dihedral angle	52

Figure 22. Development of an intersected pyramid	52
Figure 23. Triangulation development of a transition piece between	
two square tubes	52
Figure 24. Approximate development of a hemisphere	
by poly-cylindrical (Gore) method	52
Figure 25. Approximate development of a hemisphere by poly-conical method	53
Figure 26. Development of a polyhedral surface	53
Figure 27. Development of an elliptical cylinder	53
Figure 28. Intersection of cylinder and sphere	54
Figure 29. 3D model of a star	54
Figure 30. A Y-Branch	54
Figure 31. Transition piece between square and circular tubes.	54