

In this Module, we will explore the topic of intersection and development of three cylinders by creating the basic sheet metal part of a Y-branch with three branches at 120°-angle apart in Inventor (Figure 3B-1A). In heating, ventilating, and air-conditioning trade, a Y-branch is used as a junction connecting three pipes. The basic methods are:

- Creating one truncated circular cylinder in an Inventor Sheet Metal (in).ipt format file;
- Creating an Inventor Standard (in).iam assembly file; using the Place Component tool to import one occurrence of the truncated cylinder into the assembly file; and using the Pattern Component tool with the Circular option to create the other two branches.

Figure 3B-1A: A Y-Branch with three component at 120° apart.

Step 1: Creating a truncated cylindrical sheet-metal part

Launch Inventor, start a new Sheet Metal (in).ipt file under the English tab. An Inventor sheet-metal file opens. "Sketch1" is created by default in the Model panel on the XY Plane. Rename the new sketch as Cylinder Profile in the Model panel; click-select the Project Geometry tool button from the Sketch tool panel, and then the Center Point feature under the Origin folder in the Model panel; the Center Point is projected onto the sketch to provide a snap point; next, select the Line tool, move the mouse closer to the projected Center Point, and click once when the green dot snap point indicator appears, then move the mouse upward and click one at any convenient location on the screen when the vertical symbol bar appears (this line can be called "the central axis line"); right-click for the shortcut menu and choose Restart option; click a point on the right-hand side of the vertical line just drawn and at about the same height as the projected Center Point, move the cursor upward to draw another vertical line (this line can be called "the left vertical profile line," Figure 3B-1B); next, use the Offset tool to offset the "left vertical profile line" and use the General Dimension tool to apply a 0.12 inch (the thickness of the intended sheet-metal material) between the "left vertical profile line" and the offset line (Figure 3B-1C); next, use the Line tool to draw two short line segments connecting the upper end points and the lower endpoints of the "left vertical profile line" and the offset line, respectively, clicking the endpoints at the appearance of the green dot snap symbols (Figure 1C-1D); This completes the closed rectangular crosssection profile for the sheet-metal part; next, use the General Dimension tool again to apply an 18 -inch height dimension to the vertical lines of the rectangular profile, and a 6inch distance between the "the central axis line" and "left vertical profile line" (the radius of the cylindrical space); click the Return button in the Command Bar to exit the sketch (Figure 3B-1E). Save the file as Tut-Y Branch.ipt inside a new folder named Tut-Y Branch created in the Save dialog window, in an appropriate directory. Save often.

Next, select the Revolve tool; the closed rectangular cross-section profile is automatically selected; in the tool's dialog window, select the Axis button and then clickselect the "central axis line" in the Cylinder Profile sketch or the Y Axis from the Model panel; in the Extents section, select the Angle option from the drop-down menu and type 359.999 deg in the text field (Figure 3B-1F); green outlines for the geometry of the sheetmetal part appear; click the OK button to create the Revolve feature; and rename it Cylinder in the Model panel (Figure 3B-1G).

Figure 3B-1B: Projecting the Center Point and drawing two vertical lines.

Figure 3B-1E: Applying the height and radius dimensions.

Figure 3B-1C: Applying a 0.12 -inch dimension for the thickness of the sheet-metal material.

Figure 1C-1D:
Completing the rectangular crosssection profile with two short line segments.

Figure 3B-1F: the Revolve tool's dialog window.

Figure 3B1F: The Revolve Cylinder feature.

Next, select the XY Plane from the Model panel and click the Sketch button from the Command Bar tool start a new sketch; rename it Truncation Profile in the Model panel; click-select the Project Geometry tool and the Center Point in the Model panel to project the Center Point onto the sketch; use the Line, and Center Point Circle tools to draw horizontal lines, angled lines and a large circle as shown in Figure 3B-2A;
use the Trim tool to trim off segments of the angled lines beyond the circumference of the large circle as well as the unneeded portion of the circle, so as to leave a basic fanshaped profile (Figure 3B-2B); next, use the General Dimension tool to apply 30° Angular dimension between the angled lines and the horizontal lines (Figure 3B-2C); next, select the two horizontal lines and go to the Command Bar to change their Style to Construction (Figure 3B-2D); click the OK button to exit the sketch.

Figure 3B-2B: Trimming off unneeded line and arc segments (left) for the basic profile (right).

Figure 3B-2A: Starting the Truncation Profile sketcj.

Figure 3B-2C: Applying angular dimensions.

Figure 3B-2D: Changing the Style of the horizontal lines to Construction.

Next, select the Extrude tool; the fan-shaped profile is automatically selected, and if not, then click the Profile button in the tool's dialog window and click-select it on the screen; choose the All option and the Midplane option in the Extents section; click the OK button to cut the part (Figure 3B-2E); and rename the Extrude feature Truncation Cut in the Model panel (Figure 3B-2F).

Figure 3B-2E: Truncating the cylindrical sheet-metal part with the Extrude tool (left). The completed part (right).
 Model panel.

Next, click-select the outer surface of the completed part and the Flat Pattern tool icon from the Sheet Metal tool panel; the Flat Pattern window opens (Figure 3B$2 G$); click the \mathbf{X} button at the top-right corner, on the second row, to close the Flat Pattern window, and to return to the 3D model window. If desired, go to the Command Bar to change the Color rendering of the part to any metal style from the Color dropdown menu (Figure 3B-2H); The one shown is Aluminum (Polished). Save and close the file.

Step 2: Creating the Y-branch in an Inventor Standard (in).iam assembly file
Go to File \rightarrow New, or click on the New icon on Standard Tool Bar to start a new Inventor assembly file; the Open window appears. Select the English tab, then select the Standard (in).iam template, click OK button (Figure 3B-3A). A new assembly file opens.

Figure 3B-3A: Starting a new Inventor Standard (in).iam assembly file.
Select the Place Component tool; in the Open dialog window, navigate to the Tut-Y Branch folder and select the Tut-Y Branch.ipt file; and click the OK button (Figure $3 B-3 B$); the 3D folded model of the Tut-Y Branch.ipt file appears on the screen; click once on the screen to place one occurrence of the component; right-click for the shortcut menu and choose the Done option to exit the tool (Figure 3B-3C and Figure 3B-3D). The Tut-Y Branch.ipt. 1 Place Component feature appears in the Model panel. Save the file as Tut-Y Branch.iam in the same Tut-Y Branch folder. Save often.

Figure 3B-3B: Importing the 3D model of the part file with the Place Component tool and selecting the part file in the Open window.

Figure 3B-3C: Placing the part in the Inventor Standard (in).iam assembly file.

Next, go to the Model panel; click on the + buttons to open up the feature trees. Select the Place Constraint tool; in the tool’s dialog window, under the Assembly tab, click the Mate button (the leftmost one) in the Type section, and the Flush button in the Solution section; next, go to the Model panel, click on pairs of YZ Planes, then XZ Planes, and then XY Planes of the assembly file's own Origin folder and the Tut-Y Branch.ipt. 1 Place Component's Origin folder, one pair at a time, and click the Apply button after hearing a loud sound (Figure 3B-3E). Place Constraint symbols appear in the Model panel (Figure 3B-3F).

Figure 3B-3D: The placed 3D sheetmetal component.

Figure 3B-3E: The Place Constarint tool’s dialog window.

Figure 3B-3F: The Flush Place Constraint symbols in the Model panel.

Figure 3B-3B: Completing the Y-branch with the Pattern Component tool.

Next, select the Pattern Component tool; in the tool's dialog window, type 3.0 ul in the Count text field; and type 120.00 deg in the Angle text field; next, select the Circular tab; click the Component arrow button, and click-select the Tut-Y Branch.ipt. 1 Place Component either on the screen or from the Model panel; then click the Axis Direction arrow button, then click-select the Z Axis feature from the Model panel; the blue central axis line and arrowed rotation symbol appear on the screen together with the two additional parts; click the OK button to create the Pattern Component feature (Figure 3B-3B); and rename it Y Branch Component Pattern in the Model panel. The Ybranch is completed; and all features are listed in the Model panel (Figure 3B-3H). Save and close the file.

Figure 3B-3H: The features of the Y-branch listed in the Model panel.

Congratulations! You have leaned how to create a Y-branch in this Module.

