

 * K [

In Module 1A, we have explored the method of creating a cylindrical sheet metal part using the Revolve tool; with this method, a tiny gap is created along the seams of the lateral piece. In practical design, this method is suitable for situations where the foldedup lateral piece is to be welded (Figure 1G-1A); however, there are occasionally situations where the folded-up lateral piece is to be connected by an overlapping seam (Figure $1 G-1 B$). In this Module, we will learn how to create a cylindrical sheet metal lateral piece with the Contour Flange tool. In addition, we will explore a "work-around" method of creating dove-tail seams on the top edge of the lateral piece.

Figure 1G-1A: The tiny gap is created along the seams of the lateral piece when the creating a cylindrical sheet metal part using the Revolve tool.

Figure 1G-1B: The overlapping Seam.

Step 1: Construct the circular base profile with an overlapping seam
First, we will create a sheet metal file with inch as units. Launch Autodesk Inventor. Create a new sheet metal file (go to the menu File \rightarrow New, or click on the New icon on Standard Tool Bar. The Open window appears. Select the English tab; then select the Sheet Metal (In).ipt template, click OK button (Figure 1G-2A).

Creating A Circle-Based Cylindrical Sheet-metal Lateral Piece with An Overlaying Lateral Edge Seam And Dove-Tail Seams on The Top Edge

Figure 1G-2A: Starting a new Sheet Metal (In).ipt file.

Figure 1G-2B: Dismissing the default Sketch1 by clicking the Return button.

Figure 1G-2C: Deleting the default Sketch1.

Figure IG-2D: Switching to Isometric View.

Figure IG-2F: Starting a new Sketch.

Figure IG-2E: Turning on the Visibility option.
A new sheet metal file opens with two panels docked on the left side of the screen: 2D Sketch (top) and Model (bottom). The Sketch1 opens automatically on the screen; and Sketch1 feature appears on the Model panel. Click the Return key in the Inventor Standard tool bar (Figure 1G-2B) to dismiss the Sketch1 feature.

In the Model panel, click the cross on the left of the Origin folder to view the Planes, Axis and Center Point features; click-select the Sketch1 feature and right-click for the shortcut menu and choose the Delete option to delete it (Figure 1G-2C). Next, go to the View \rightarrow Isometric menu to switch to an isometric view (Figure 1G-2D). Next, select the XZ Plane, then right-click to open the short cut menu and check the Visibility option (Figure 1G-2E). Next, click-select the XZ Plane and then the Sketch button on the Inventor Standard tool bar to start a new sketch (Figure 1G-1F); Sketch2 feature appears in the Model panel; highlight the Sketch2 name and type Base Profile to rename the feature.

Next, click-select the XZ Plane and then the Look At tool button in the Inventor Standard tool bar (Figure 1G-2G, left) to switch to an orthographic normal view (Figure $1 G-2 G$, right). Now, we are ready to start the elliptical base profile.

Click-select the Project Geometry tool from the 2D Sketch tool panel and then the Center Point from the Model panel to project it onto the Base Profile Sketch; a green dot appears on the center of the Base Profile Sketch; next, select the Center Point Circle tool from the 2D Sketch tool panel and create a horizontal line starting from the projected Center Point; use the General Dimensions tool to apply a 24 -inch diameter dimension (Figure 1G-3A). Next, use the Line tool to create a horizontal line starting at
the projected Center Point and ending at a convenient location on the right of the circle; and right-click for the shortcut menu and choose the Restart option (Figure 1G-3B) to create another horizontal line starting at the projected Center Point and ending at a convenient location on the left of the circle (Figure 1G-3C); next, select the Trim tool to trim off the lower half of the circle (Figure 1G-3D); right-click for the shortcut menu and choose Done [Esc] option to exit the tool (Figure 1G-3E).

Figure IH-2G: Selecting the XZ Plane and clicking the Look At tool button (left); switching to an orthographic normal view (right).

Figure 1G-3A: Creating the circle and applying a 24-inch diameter dimension.

Figure 1G-3B: Creating a horizontal line starting at the projected Center Point and ending at a convenient location on the right of the circle; and selecting the Restart option to create a new line.

Figure 1G-3C: Creating the other horizontal line.

Figure 1G-3D: trimming off the lower half of the circle.

Figure 1G-3E: Exiting the tool.
Next, select the left horizontal line and press the Delete key on the keyboard to delete it (Figure 1G-3E). Next, select the General Dimension tool to apply a 0.066 -inch (half of the thickness of the sheet-metal material plus a 0.001 -inch gap allowance, or $0.120 \div 2+0.001=0.066$) linear dimension to the short line (Figure $I H-3 F)$.

Figure 1G-3E: Selecting and deleting the left horizontal line.

Figure 1G-3G: Clicking once at the right endpoint of the short line (point A) segment to establish the center of the circle.

Figure IG-3F: Applying a 0.065-inch linear dimension to the short line.

Figure 1G-3H: Clicking the Zoom All button to view the entire circle and clicking the left endpoint of the circular arc to establish the radius of the "overlapping circle."

Next, use the Zoom Window tool to zoom in the area enclosing the 0.066 -inch short line segment; select the Center Point Circle tool; click once at the right endpoint of the short line segment to establish the center of the circle, at the appearance of the
green dot endpoint snap indicator (Figure 1G-3G); click the Zoom All tool button on the Inventor Standard toolbar so as to view the entire circle (Figure 1G-3H), and click once at the left endpoint of the circular arc to establish the radius of the circle (Figure $1 G-3 H$). Next, select the Center Point Circle tool and create a circle to establish the width of the overlapping seam; select the General Dimension tool to apply a 2.00 -inch diameter dimension (corresponding to approximately 1.00 -inch of the intended width for the overlapping seam (Figure 1G-3J). Next, select the Trim tool to trim off the upper half of the "overlapping circle" (Figure 1G-3K).

Figure 1G-3K (above): Trimming off the upper half of the "overlapping circle."

Figure 1G-3J (left): Creating the "seam width" construction circle.

The profile of the cylindrical sheet-metal piece with overlapping seam is complete. Click the Return button on the Inventor Standard tool bar to exit the Sketch mode. Next, go to the View \rightarrow Isometric menu to switch to an isometric view (Figure 1G3M). In the Model panel, select the Sketch1 feature, highlight the name and retype Base Profile to rename it. Now, start saving the file. Press Ctrl and skeys simultaneously to save the file as Tut- Cylinder with Overlapping Seam.ipt with Part File (*ipt) for Save As Type field, in a convenient directory location, in a new folder to be created and named Tut-Cylinder with Overlapping Seam in the Save As window in a convenient directory location (Figure 1G-3N through Figure 1G-3Q). Save often, at least at the end of each step.

Creating A Circle-Based Cylindrical Sheet-metal Lateral Piece with An Overlaying Lateral Edge Seam And Dove-Tail Seams on The Top Edge

Figure 1G-3N: Creating the Tut-Cylinder with Overlap-ping Seam folder.

Figure 1G-3P: Saving the file asTut- Cylinder with Overlapping Seam.ipt inside the Tut-Cylinder with Overlap-ping Seam folder.

Figure 1G-3Q: Clicking the OK button to dismiss the warning message if it appears and to save the file.

Step 2: Create the circular cylindrical sheet-metal lateral piece with an overlapping seam

Next, switch to the Sheet metal Features tool panel and select the Contour Flange tool; click the Profile button in the tool's dialog window and click-select the open circular profile on the screen; the green geometry outlines of the Contour Flange appears on the screen (Figure 1G-4A); use the Zoom Window tool to zoom in the area with the overlapping seam as shown in Figure $1 G-4 B$; click the Offset button in the tool's dialog window so that the Contour Flange's points inward (Figure 1G-4B); click the OK button to create the Contour Flange feature, and rename it Cylinder in the Model panel. Select the XZ Plane on the screen and right-click for the shortcut menu to uncheck the Visibility option; the XZ Plane disappears from view (Figure 1G-4C). Next, select the Rotate tool and rotate the model to a convenient location where the overlapping seam can be easily seen (Figure 1G-4D).

Figure 1G-4A:
Click-selecting the open circular profile on the screen.

Figure 1G-4B:
Clicking the Offset button in the tool's dialog window so that the Contour Flange's points inward.

Next, select the Corner Chamfer tool; click the Corner button in the tool's dialog window and then the front and rear end corners of the overlapping seam; red geometry outlines for the Corner Chamfer features appears on the screen (Figure 1G5A); click the OK button to create the Corner Chamfer features (Figure 1G-5B), and rename them Seam Corner Chamfers in the Model panel.

Figure 1G-4D: Rotating the model.

Figure 1G-4C: Un-checking the Visibility of the XZ Plane.

Figure 1G-5A: Adding Corner Chamfers.

Figure 1G-5B: The Corner Chamfers.
Next, go to the View \rightarrow Isometric pull-down menu to switch to an isometric view (Figure 1G-5C); next, click-select the outer surface of the folded-up model and click the Flat Pattern tool button in the Sheet Metal Features to create the Flat Pattern view (Figure 1G-D). The Flat Pattern view window opens; close the Flat Pattern window so

Creating A Circle-Based Cylindrical Sheet-metal Lateral Piece with An Overlaying Lateral Edge Seam And Dove-Tail Seams on The Top Edge
as to return to the 3D model screen by clicking the lower X box at the upper-right corner of the screen (Figure 1G-E).

Figure 1G-5C: Switching to an isometric view.

Figure 1G-D: Creating the Flat Pattern view.

Figure 1G-5A: Selecting the top edge surface to start a new sketch (the Dove-tail Seams Profile).

Figure 1G-4E: The Flat Pattern view window.

Step 3: Creating the dove-tail seams on the top edge of the cylindrical sheet-metal lateral piece with a "work-around" method

We will now create dove-tail seams on the top edge of the cylindrical sheet-metal lateral piece with a "work-around" method. Since Inventor cannot create Flange features (the seams with the appropriate Bend features) on a curved surface (the surface of the lateral piece of the cylindrical sheet-metal part, we will use the Extrude tool to create "standing-up" seams without the appropriate Bend features, as a "work-around" method. Although the dive-tail seams so created are not bent as they should be, bends can be made in the fabrication process.

First, select the Zoom Window tool to zoom in any convenient portion of the top surface of the lateral piece so that the surface can be click-selected; click-select the top surface and then the Sketch tool button to start a new Sketch feature, as shown in Figure 1G-5A, and rename it Dove Tail Seam Profile in the Model panel; next, click the Look At button on the Inventor Standard tool bar and then the Dove Tail Seam Profile Sketch feature to switch to an orthographic normal view (Figure 1G-5B). Notice that the edges of the top edge surface are automatically projected onto the new Sketch feature when started, by Inventor's default settings; window-select the projected outlines, and press the Delete key on the keyboard to delete them. Next, select the Project Geometry tool and select the Center Point feature from the Model panel to project it onto the Dove Tail Seam Profile Sketch feature. Next, select the Line tool and create a vertical line and an inclined line, both starting from the projected Center Point (Figure 1G-5C).

Figure 1G-5B: Switching to an orthographic normal view.

Figure 1G-5C: Creating a vertical line and an inclined line.

Next, graphically determine the approximate inner angle of a slice of the circle enclosed by the outer circular edge of the cylindrical sheet-metal part, for the cord length (the dove-tail width) to be approximately 1.00 inch. Select the Center Point Circle tool to create a circle centered at the approximate point of intersection between the vertical line and the outer circular edge of the cylindrical sheet-metal part, and use the General Dimension tool to apply a 2.00 -inch diameter dimension to the circle (the "dove-tail seam width construction circle," corresponding to twice the intended 1.00 -inch width for the dove-tail seams; Figure 1G-5D); next, applying a angular dimension to the vertical and inclined lines; the default measured value indicate that the angle is 9.08° and its two points of intersection with the outer edge of the cylindrical sheet-metal part forms a cord with a length twice as large as the radius of the "dove-tail seam width construction circle;" therefore, type 5 deg in the General Dimension tool's text field and click the green checkmark (Figure 1G-5E); the inclined line now appears to be tangent to the "dove-tail seam width construction circle" (Figure $1 G-5 F$). Therefore, the inner angle is approximately 5°. The alternative mathematical method can be used to determine the inner angle of the slice of the circle enclosed by the outer circular edge of the cylindrical sheet-metal part, for the dove-tail width to be an intended value:

$$
\begin{aligned}
& \text { Circumferance }_{\text {Circle }}=\text { Diameter }_{\text {Circle }} \times \pi=24.0 \times 3.14 \approx 75.4 \mathrm{in} \\
& \text { Number }_{\text {Slice }}=\frac{\text { Circumferance }_{\text {Circle }}}{\text { Width }_{\substack{\text { Dove-tail } \\
\text { Seam }}}=\frac{75.4 \text { in }}{1.00 \text { in }} \approx 75} \\
& \text { Angle }_{\text {inner }}=\frac{\text { Angle }_{\text {Circle }}}{\text { Number }_{\text {Slice }}}=\frac{360^{\circ}}{75}=4.8^{\circ} \approx 5.0^{\circ}
\end{aligned}
$$

Figure 1G-5D: Creating the 2.00-inch diameter "dove-tail seam width construction circle" centered at the approximate point of intersection between the vertical line and the outer circular edge of the cylindrical sheetmetal part.

Figure 1G-5E: Applying an angular dimension.

Next, select the Project Geometry tool and click-select the inner and outer edges of the sheet-metal part to project them onto the sketch. Next, select the inclined line and the "dove-tail seam width construction circle" and press the Delete key on the keyboard to delete them (Figure 1G-5F). Next, select the Trim tool to trim off the excessive segment of the vertical line (Figure 1G-5G). Next, select the Circular Pattern tool; click the Geometry button in the tool's dialog window, and click-select the vertical line (Figure 1G-5H); click the arrow button on the left of the Axis button in the tool's dialog window, and click-select the center point of the circle (lower endpoint of the vertical line) (Figure 1G-5J); the Circular Pattern geometry appears on the screen (Figure 1G-5K); type 360/5 for number of Instances of the Circular Pattern in the tool's dialog window (Figure 1G-5L); click the OK button to create the Circular Pattern 2D sketch feature (Figure 1G-5M).

Figure 1G-5G: Trimming the excessive segment of the vertical line.

Figure 1G-5F: The inclined line appearing to be tangent to the "dove-tail seam width construction circle;" selecting and deleting the inclined line and the "dove-tail seam width construction circle;" and projecting the inner and outer edges of the sheet-metal part onto the sketch.

Figure 1G-5H: Selecting the vertical line for Geometry.

Figure 1G-5K: Circular Pattern geometry appearing on the screen.

Figure 1G-5J: Selecting the center point of the circle (lower endpoint of the vertical line) for Axis.

Figure 1G-5L: Typing 360/5 for number of Instances of the Circular Pattern.

Next, use the Zoom Window tool to zoom in a reasonably sized area of the top edge surface; select the Trim tool to trim off pairs of arc segments for the gaps between the dove-tail seams (Figure 1G-5N); hold the middle button of the mouse and drag to pan to next areas when needed; when finished, right-click for the shortcut menu and choose the Done option to exit the tool (Figure 1G-5P).

Figure 1G-5M: The Circular Pattern 2D sketch feature.

Figure 1G-5N: Trimming off pairs of arc segments for the gaps between the dove-tail seams.

Figure 1G-5P: Right-clicking for the shortcut menu and choose the Done option to exit the Trim tool after completing all gaps between the dove-tail seams.

Figure 1G-5Q: Window-selecting all radiating Circular Pattern lines starting from a lower right corner and ending at an upper left corner.

Figure 1G-5R: All radiating Circular Pattern lines selected.

Figure 1G-5S: Changing the line Style of radiating Circular Pattern lines to Construction.

Next, window-selecting all radiating Circular Pattern lines starting from a lower right corner and ending at an upper left corner (Figure 1G-5Q and Figure 1G-5R); click the Construction button on the Inventor Standard tool bar to change their line Style to Construction (Figure 1G-5S). Next, select the Line tool to add short edges to the dovetail seams' closed profile, click at the appearance of green dot endpoint snap indicators to make sure that the profiles are closed (Figure 1G-5T). Click the Return button to exit the sketch. Go to the View \rightarrow Isometric menu to switch to an isometric view.

Figure 1G-5T: Using the Line tool to add short edges to the dove-tail seams' closed profiles.

Figure 1G-6A: Switching to an isometric view, and to the Part Features tool panel.

Figure 1G-6B: Creating the dove-tail seams.
Next, switch to the Part Features tool panel from the Sheet Metal Features tool panel by clicking the downwardly-pointing triangle next to the name and choosing the Part Features option from the pull-down menu (Figure 1G-6A). Next, select the Extrude tool; click the Profile arrow button in the tool's dialog window and then clickselect the closed profiles for dove-tail seams, with the help of the Zoom Window tool if needed; select Distance for Extents and type 1 in (inch) in the text field, click the leftmost Direction button so that the dove-tail seams; green geometry outlines point upward; click the OK button to create the dove-tail seams (Figure 1G-6B); and rename the Extrude feature Dove Tail Seams in the Model panel.

Next, switch to the Sheet Metal Features tool panel; click-select the frontal outer surface of the lateral piece and click the Flat Pattern tool button to create the Flat Pattern view (Figure 1G-6C). If desirable, apple a colorful material rendering by selecting a material type from the pull-down menu on the Inventor Standard tool bar in the Flat Pattern window; the folded-up 3D model window automatically updates (Figure 1G-6D). Save the file. The features of the sheet-metal part are listed in the Model panel (Figure 1G-6F).

Creating A Circle-Based Cylindrical Sheet-metal Lateral Piece with An Overlaying Lateral Edge Seam

Figure 1G-6C: Creating the Flat Pattern view.

Figure 1G-6D: Applying an Aluminum (Polished) material rendering in the Flat Pattern window.

Figure 1G-6E: The folde-up3D model window automatically updating to the assigned material rendering.

Congratulations! In this Module, you have learned how to create a cylindrical sheet-metal part with an overlapping seam on its lateral edge and dove-tail seams on its top edge, and its Flat Pattern view.

Creating A Circle-Based Cylindrical Sheet-metal Lateral Piece with An Overlaying Lateral Edge Seam And Dove-Tail Seams on The Top Edge

Browser Bar	区
Model ${ }^{\text {r }}$?
∇	

Figure 1G-6F: The Model panel feature list.

