

In this Module, we will explore the topic of oblique cylinder by creating sheet metal parts in Autodesk Inventor wrapping the 3D space of an oblique cylinder with a circular cross section. An oblique cylinder is one with the central axis as well as all element lines being not straight up but forming an angle $0^{\circ}<\theta<90^{\circ}$ with the horizontal ground. There may be two cases:

- An oblique cylinder with a circular cross-section; in this case, the development of 2D Flat Pattern can be obtained through parallel-line development method (Figure1E-1A);
- An oblique cylinder with a circular base; in this case, the development of 2D Flat Pattern can be obtained through triangulation development method.

In this Module, we will study the methods of creating sheet metal parts in Autodesk Inventor wrapping the 3D space of an oblique cylinder with a circular cross section. There are two basic methods for creating the lateral piece:

- Creating the lateral piece of the oblique cylinder with a circular cross-section with the Revolve tool; apply a horizontal cut the both the top and bottom portion of the lateral piece;
- Creating the lateral piece of the oblique cylinder with a circular cross-section with the Contour Flange tool; apply a horizontal cut the both the top and bottom portion of the lateral piece.

In this Module, the Revolve method will be explored.


Figure1E-1A: The orthographic Views, isometric view and flat pattern of an oblique cylinder with a circular cross-section.

## Step 1: Creating the lateral cylindrical piece with the Revolve tool

Launch Inventor, start a new Sheet Metal (in).ipt part file under the English tab (Figure1E-1B). An Inventor sheet-metal file opens. "Sketch1" is created by default in the Model panel on the XY Plane; rename the new sketch as Oblique Cylinder Profile in the Model panel; click the Look At tool button on the Command Bar and then the Oblique Cylinder Profile in the Model panel to switch to an orthographic normal view; clickselect the Project Geometry tool button from the Sketch tool panel, and then the Center Point feature under the Origin folder in the Model panel; the Center Point is projected onto the sketch to provide a snap point; next, select the Line tool, move the mouse closer to the projected Center Point, and click once when the green dot snap point indicator appears, then move the mouse rightward horizontally (with the help of the Horizontal short bar indicator) and click one at any convenient location on the screen; right-click for the Line tool's shortcut menu and choose the Restart option to draw another line; move the mouse upward vertically (with the help of the Perpendicular $\perp$ indicator) and click one at any convenient location on the screen; next, select the General Dimension tool and click the vertical line to apply a 36 in (inch) height dimension; next select the Line tool again, move the mouse cursor closer to the projected Center Point again and click
once when the green dot snap point indicator appears, then move the mouse upward and rightward at an angle and click one at a convenient location fairly above the height of the vertical line and click once to draw a slanted line (the "oblique central axis line"); rightclick for the shortcut menu again and choose Done to exit the tool; next, click-select the "oblique central axis line" and go to the Command Bar to change its Style to Centerline from the drop-down menu; next, select the General Dimension again and click the horizontal line and the "oblique central axis line" to apply a 60 deg ( $60^{\circ}$ ) angular dimension between them (Figure 1E-1C); next, select the Line tool again, click once at a point on the left of and fairly above the "oblique central axis line," move the mouse cursor closer to the "oblique central axis line" to pick up a Parallel constraint indicator (which appears as //) and move the mouse back, leftward and downward to a location fairly below the "oblique central axis line," and with the help of the // Parallel constraint indicator, click once to create a line (the "cross-section outer wall line") parallel to the "oblique central axis line" (Figure 1E-1D) next, select the General Dimension tool, click the "cross-section inner wall line" and the "oblique central axis line" to apply a $\varnothing 36.0$ diameter dimension (Figure 1E-1E); next, select the Offset tool, click the "cross-section outer wall line" once, move the mouse cursor rightward and click a second time to create an offset line (the "cross-section inner wall line," as shown in Figure 1E-1F); next, select the General Dimension tool, click the "cross-section inner wall line" and the "crosssection outer wall line" to apply an Aligned Dimension of 0.12 in (inch) for the thickness of the sheet-metal material (Figure 1E-1G and Figure 1E-1H); next, select the Line tool to add a short line on the top to close the cross-section and a short line on the base to close the cross-section, with the help of the Zoom Window tool and the green dot endpoint snap indicator (Figure 1E0-1J and Figure 1E0-1K); next, select the General Dimension tool to apply a 80.0 -inch (or greater) aligned dimension to the "cross-section outer wall line" to ensure enough length, if necessary (Figure $1 E-1 L$ ). The closed crosssection profile is completed; click the Return button on the Command Bar to exit the sketch. Save the file as Tut-Oblique Cylinder.ipt in side a folder to be created and name Tut-Oblique Cylinder in the Save As dialog window. Save often at the end of each feature's creation.


Figure 1E-1B: Starting a Sheet Metal (in) file in Autodesk Inventor.


Figure 1E-1C: Projecting the Center Point, Creating the horizontal and vertical lines, applying a height dimension to the vertical line, creating the $60^{\circ}$ "oblique central axis line" beyond the height of the vertical line.


Figure 1E-1D: Creating the "crosssection outer wall line" parallel to the "oblique central axis line."


Figure 1E-1E: Applying a Ø36.0-inch diameter dimension.


Figure 1E-1F: Creating the "cross-section inner wall line."


Figure 1E-1G: Applying a 0.12 in dimension for the thickness of sheetmetal material.


Figure 1E-1K: Adding a short line on the base to close the cross-section.


Figure 1E-1H: The thickness dimension applied.


Figure 1E0-1J: Adding a short line on the top to close the cross-section.

Figure 1E-1L: Applying a 80.0inch aligned dimension to the "cross-section outer wall line" to ensure enough length.



Figure 1E-1N: The basic lateral piece.

Figure 1E-1-1M: Revolving the cross-section profile by 359.999 degrees.

Next, select the Revolve tool, the closed cross-section profile and the "oblique central axis line" with Centerline as Style are automatically selected as Profile and Axis; in the tool's dialog window, select the Angle option from the drop-down menu and type 359.999 deg $\left(359.999^{\circ}\right)$ in the text field, in the Extents section (Figure 1E-1-1M); click the OK button to create the Revolve feature (Figure 1E-1N), and rename it Oblique Cylinder in the Model panel.

## Step 2: cutting the top and base portion of the cylindrical piece

Select the XY Plane and click the Look At button and Sketch button on the Command Bar to switch to an orthographic normal view and start a new sketch (Figure 1E-2A); rename it Truncating Profile in the Model panel; select the Project Geometry tool and the Center Point from the Model panel to project it onto the sketch (Figure 1E$2 B$ ); select the Line tool to draw three horizontal lines: one starting and snapped to the projected Center Point and ending at its left side (the "ground edge line"), one starting and snapped to the projected Center Point and ending at its right side, and one above the first two lines (the "upper edge line" as shown in Figure 1E-2C), all with the help of the Horizontal constraint indicator (- sign); next, draw additional lines to complete two closed cutoff profiles that cover the upper and lower portions of the oblique cylindrical piece; next, select the General Dimension tool to apply a 36 in (inch) height dimension between the "ground edge line" and the "upper edge line" (Figure 1E-2D); the Truncating Profile is completed; click the Return button on the Command Bar to exit the sketch.



Figure 1E-2B:
Projecting the Center Point.

Next, select the Extrude tool; the two closed cutoff profiles are automatically selected; in the tool's dialog window, select the Cut option, All for Extents, and Midplane for direction; click the OK button to finish (Figure 1E-2E); the oblique cylindrical piece is completed (Figure 1E-2F); rename the Extrude feature Truncating Cut in the Model panel; next, click-select the surface of the oblique cylindrical piece, and select the Flat Pattern tool, the Flat Pattern window opens (Figure 1E-2G). All features of the part are listed tin the Model panel (Figure 1E-2H). Save and close the file.

Parallel-Line Flat Pattern Development of Sheet-Metal Folded Model Wrapping the 3D Space of An Oblique Circular Cylinder


Figure 1E-2D: Completing the Truncating Profile sketch.


Figure 1E-2E: Using the Extrude tool with Cut option to truncate the oblique cylindrical piece.


Figure 1E-2F: The completed oblique cylindrical piece.


Figure 1E-2G: The Flat Pattern view.

Figure 1E-2H: All features of the part are listed tin the

Model panel.


## Step 3: Creating the top piece

Go to the File $\boldsymbol{\rightarrow}$ New menu to start another Inventor Sheet Metal (in).ipt part file; the Sketch1 feature is automatically created; click the Return button to exit the sketch; right-click the Sketch1 feature in the Model panel for the shortcut menu and choose the Delete option to delete it (Figure 1E-3A).


Delete selected items

Figure 1E-3A: Deleting the default Sketch1 feature.


Figure 1E-3B: Opening the Tut-Oblique Cylinder.ipt file as a Derived Part.

Next, select the Derived Part tool from the Features tool pane; the Open dialog window appears (Figure 1E-3B); select the Tut-Oblique Cylinder.ipt file from the TutOblique Cylinder folder; click the Open button; next, in the Derived Part dialog window that opens, select the Body as Work Surface option, and click the OK button (Figure $1 E-3 C$ ) to import the reference geometry of the 3D model from the Tut-Oblique Cylinder.ipt file into the new file. Save the file as Tut-Oblique Cylinder Top.ipt in the same Tut-Oblique Cylinder folder. Save often after the completion of each feature.


Next, use the Zoom Window tool to zoom in a small portion of the top edge so that the truncated surface can be selected (Figure 1E-3E); click-select the narrow truncated surface and click the Sketch button to start a new sketch; rename it Top Face Profile in the Model panel; select the Project Geometry tool and click the outer edge of the Work Surface of cylindrical piece to project it onto the sketch (Figure 1E-3F). Remember that when the cylindrical piece is created by the Revolve tool, its crosssection profile is revolved by $359.999^{\circ}$ and therefore, there is a gap to allow Inventor to generate the Flat Pattern view; however, in order to create the top face sheet metal feature, a closed profile is needed; thus, the gap in the projected outer edge line must be filled in. Use the Zoom Window tool to zoom in the tiny area of the gap (Figure 1E-3G); use the Line tool to add a short line segment so as to fill in the gap and turn the open profile into a close profile (Figure 1E-3H); click the Return button to exit the sketch. Save the file.


Figure 1E-3E: Zooming in a small portion of the truncated surface and click-selecting it to start the Top Face Profile sketch.


Figure 1E-3H: Drawing a short line segment to fill in the gap.


Figure 1E-3F: Projecting the outer edge of the Work Surface of cylindrical piece onto the sketch.


Figure 1E-3G:
Zooming in the tiny area of the gap.

Next, select the Face tool to create the top piece; make sure that the green Offset direction arrow points upwards; otherwise, click the Offset button in the tool's dialog window to change the direction (Figure 1E-4A); click the OK button to create the Face feature; and rename it Top Face in the Model panel. Select the top surface of the Top Face (Figure 1E-4B) to create the Flat Pattern view (Figure 1E-4C). All features of the part are listed in the Model panel (Figure 1E-4D). Save and close the file.


Figure 1E-4A: Creating the Top Face feature.


Figure 1E-4B:
Selecting the top surface of the Top Face to create the Flat Pattern view.


Figure 1E-4C: The Flat Pattern view window.


Figure 1E-4D: All features of the part are listed in the Model panel.

## Step 4: Assembling the lateral, top and base pieces

Go to the File $\rightarrow$ New menu to start an Inventor Standard (in).iam assembly file (Figure 1E-5A); after the assembly file opens, select the Place Component tool; in the Open dialog window, select the Tut-Oblique Cylinder Top.ipt file, and click the OK button (Figure 1E-5B); the 3D model of the top piece appears on screen; click once to create an occurrence of the part; right-click for the shortcut menu and choose the Done option (Figure 1E-5C). Next, select the Place Component tool again; in the Open dialog window, select the Tut-Oblique Cylinder.ipt file, and click the OK button (Figure 1E$5 D$ ); the 3D model of the lateral cylindrical piece appears on screen; click once to create an occurrence of the part; right-click for the shortcut menu and choose the Done option to

Parallel-Line Flat Pattern Development of Sheet-Metal Folded Model Wrapping the 3D Space of An Oblique Circular Cylinder
finish (Figure 1E-5E). Save the file as Tut-Oblique Cylinder Top Base \& Lateral.iam in the same Tut-Oblique Cylinder.ipt folder.


Figure 1E-5A: Starting an Inventor Standard (in).iam assembly file.


Figure 1E-5B: Selecting the Tut-Oblique Cylinder Top.ipt file in the Open dialog window.


Figure 1E-5C: Creating an occurrence of the top piece.


Figure 1E-5D:
Selecting the TutOblique Cylinder.ipt file in the Open dialog window.


Figure 1E-5E: Creating an occurrence of the lateral oblique cylindrical piece.

Next, Assemble the top piece and the cylindrical lateral piece. The shortcut method to accomplish this is to apply Flush Mate Constraint to pairs of YZ Plane, XZ Plane, and XY Plane features between each of the Place Component features, and between each of the Place Component features and the assembly file's own Plane features. Select the Place Constraint tool; in the tool's dialog window, select Mate for Type, and Flush for Solution; in the Model panel, click the + button on the left of the Origin folder of the Tut-Oblique Cylinder Top Base _Lateral.iam, Tut-Oblique Cylinder .ipt, and Tut-Oblique Cylinder Top.ipt components, then click-select a pair of similar Plane features between two components; after selecting two similar Plane features, the program gives a loud sound; click the Apply button to apply a Flush Mate constraint; the Flush constraint features appears in the Model panel. Repeat the same process to apply the same Constraint to all pairs of same plane features (Figure 1E-5F). All features are listed in the Model panel (Figure 1E-5G). Save the file.


Figure 1E-5F: Repeating the same process to apply the same Constraint to all pairs of same plane features

Notice that the assembly has a strong orange tint; and this is so because the Work Surface model of the Derived Part in the Tut-Oblique Cylinder Top.ipt file is visible. Open this file, and in the Model panel, click the + button on the left of the Tut-Oblique Cylinder.ipt feature to open it; Select the Derived Work Body1 feature, right-click for the shortcut menu and uncheck Visibility (Figure 1E-5H); the orange Work Surface model disappears from the screen (Figure 1E-5J) and its listing is grayed out in the Model panel. Save and close the file.

Parallel-Line Flat Pattern Development of Sheet-Metal Folded Model Wrapping the 3D Space of An Oblique Circular Cylinder


Figure 1E-5G: All features are listed in the Model panel.


Figure 1E-5H: Removing Visibiity of the Derived Part.


Figure 1E-5J: The Derived Part's Work Surface geometry no longer visible.


Figure 1E-5K: Placing another occurrence of the top piece, to be used as the base piece.

Figure 1E-5L: Applying a Mate Type Mate Solution constraint between the cylindrical lateral piece and the top piece used here as the base piece.


Next, go back to the Tut-Oblique Cylinder Top Base \& Lateral.iam assembly file; select the Place Component tool again to pace another copy of the top piece from the Tut-Oblique Cylinder Top.ipt file in the assembly file (Figure 1E-5K); since the top piece and the base piece are the same, the copy of the top piece can be used as the base piece.

Next, select the Place Constraint tool; in the tool's dialog window, select Mate for Type and Mate for Solution, as shown in Figure 1E-5L, click-select the outer bottom edge of the cylindrical piece and the top edge of the top piece (used as the base piece here), click the OK button to apply the constraint. The two edges from both pieces immediately match. The assembly file is complete. Save the file.

If desired, then open the Tut-Oblique Cylinder.ipt file, go to the Color drop-down list to change the material rendering the cylindrical part. The Tut-Oblique Cylinder Top Base \& Lateral.iam file immediately updates (Figure 1E-5N).


## Color




Figure 1E-5N: The resulting look of the assembly file.

Figure 1E-5M: Applying a material style.
Congratulations! In the Module $1 E$, you have learned how to create sheet-metal parts wrapping the 3D space of an oblique cylinder with a circular cross-section.

