

In this Module, we will explore the method of adding dovetail seams to curved edges such as the circumferential edge of a circular sheet-metal piece in Autodesk Inventor. There are two basic methods:

- Creating the circular piece with the Face tool; add short straight edge Face elements to the circumferential edge; and add Flange features to the Face elements to create dovetail seams;
- Creating the circular sheet-metal piece as a polygonal Face feature with tiny polygonal straight edges; and add Flange features to the tiny polygonal edges to create dovetail seams as Flange features.

In this Module, both methods will be explored.

Step 1: Creating dovetail seams with a polygonal Face feature

Launch Inventor, start a new Sheet Metal (in).ipt file under the English tab. An Inventor sheet-metal file opens. "Sketch1" is created by default in the Model panel on the XY Plane. Click the Return button on the Command Bar to dismiss this Sketch feature. Right-click the Sketch1 feature for the shortcut menu and choose the delete option to delete it. Click-select the XZ Plane from the Model pane and click the Sketch button on the Command Bar to start a new sketch; rename the new sketch as Circular Piece Profile in the Model panel; click-select the Project Geometry tool button from the Sketch tool panel, and then the Center Point feature under the Origin folder in the Model panel; the Center Point is projected onto the sketch to provide a snap point; next, select the Circle Center Point tool, move the mouse closer to the projected Center Point, and click once when the green dot snap point indicator appears, then move the mouse outward and click one at any convenient location on the screen; next, click-select the General Dimension tool and click the circumference of the circle; in the text field window that opens, type 48 in (inches) and click the green checkmark; the diameter of the circle changes (Figure 1C-1A). If the circle expands beyond the boundary of the screen, then click the Zoom All button from the Command Bar to bring the entire circle within the screen; next, select the circle and go to the Style pull-down menu to change the circle's line Style to Construction. Next, select the Line tool, move the mouse closer to the projected Center Point and click once when the green dot snap point indicator
appears, move the mouse to the left (or right or straight up or down) along the horizontal (or vertical) major grid line beyond the circumference of the circle, close once when the parallel indicator appears. Next, select the Trim tool, click on the portion of the line just drawn that is outside of the circumference of the circle to trim it off. Next, select the Polygon tool, choose the Circumscribed option in the tool's dialog window (we choose the Circumscribed option to allow the dovetail seams to bend beyond the area of the circular piece so as to cover the outside face of the adjacent cylindrical piece in the sheetmetal assembly; if we intend to allow the dovetail seams to bend toward the area of the circular piece so as to cover the inside face of the adjacent cylindrical piece in the sheetmetal assembly, then we can choose the Inscribed option); type 48 in the Number of Sides text field; move the mouse cursor closer to the projected Center Point and click once when the green dot snap indicator appears; then move the mouse cursor closer to the end point of the line that touches the circumference of the circle, click once when the green dot snap indicator appears (Figure 1C-1B). The profile for the circular piece is completed. Click the OK button to exit the Sketch mode.

Figure 1C-1A:
Projecting the Center Point, drawing the circle and applying dimension

Figure 1C-1B: Drawing the line, trimming it against the circumference of the circle, and creating the polygon.

Next, select the Face tool; the circular profile is automatically selected and shown in light green with a green arrow pointing up for the direction of the Face extrusion; click the OK button; the Face feature is created; rename it as Circular Face in the Model panel (Figure 1C-1C). The polygonal Face feature is created.

Figure 1C-1C: Creating the Circular Face feature.

Figure 1C-1D: Creating dovetail seams.

Next, use the Flange tool to add dovetail seams as Flange features on the short edges of the polygonal Face. Select the Flange tool; in the tool's dialog window (Figure $1 C-1 D$); type 1 in (inch) in the Distance text field and 90.0 in the Angle text field; click the << button to open up click the arrow button to open the Extents section, and select the Offset from Type drop-down menu, type 0.1 in (inch) in both Offset1 and Offset2 text field; then click-select any of the top short edges of the Circular Face feature; the arrow button on the Offset1 text field is automatically selected; click one of the endpoint of the selected edge and then another endpoint; make sure that the green arrow points outward; if not, then click the Flip Offset button to change the direction; make sure that the outline of the Flange points downward; if not, then click the Flip Direction button to change the direction; click the Apply button to create the first dovetail seam Flange feature; repeat the same procedures to create the remaining 47 dovetail seam Flange features; and rename them Outer Sean 1, 2, 3, ... 48 in the Model panel.

Figure 1C-1E: Creating all 48 Outer Seams. Selecting the top surface for a new sketch.

Figure 1C-1F: Creating the Hole sketch.

Step 1: Creating dovetail seams with a circular Face feature

In this part of the Module, we will explore another method of creating dovetail seams on a circular Face feature.

Figure 1C-1H: Creating the Hole Cut feature.

Figure 1C-1G: Using the Cut tool.
First, select the top surface and click the Sketch button to start a new sketch (Figure 1C-1E); select the Project Geometry tool and the then the Center Point feature in the Model panel to project the Center Point onto the new sketch; next, select the Circle Center Point tool, click on the projected Center Point (a green dot snap indicator appears), drag the cursor out and click again to draw a circle; then use the General Dimension tool to apply a 30 -inch diameter dimension; rename the sketch Hole in the Model panel; click the Return button to exit the sketch (Figure 1C-1F). Next, select the Cut tool; in the tool's dialog window, select All in the Extents drop-down menu; and select the Midplane for direction; click the $\mathbf{O K}$ button to create the cut; rename it Hole Cut in the Model panel.

Next, cut short straight edges from the circular edge of the Hole Cut for dovetail seam Flange features. The short straight edges should be tangent to the circular edge of the Hole Cut. Select the top surface again and click the Sketch button to start a new sketch (Figure 1C-1J); select the Project Geometry tool, click on the Center Point feature in the Model panel and then the inner circular edge of the Circular Piece to project them onto the sketch (Figure 1C-1K); use the Line tool to draw a vertical line (the "centerline") from the projected Center Point upward; use the Offset tool to draw offset lines from the "centerline" and use the General Dimension tool to apply a 0.5 -inch dimension from both offset lines to the "centerline" (Figure 1C-1L); next, use the Line tool to draw a horizontal line above the top portion of the projected edge of the Hole Cut, and use the Tangent tool to move the horizontal line to tangency with the circular edge (Figure 1C-1M); next, use the Zoom Window tool to zoom in the area around the short
tangent edge line; use the Line tool again to draw a horizontal line beneath the short horizontal tangent line; and use the Trim tool to trim off all unneeded line segment so that only a rectangular profile remains (Figure 1C-1N); click the Return button to exit the sketch; and rename it Inner Straight Edge in the Model panel.

Figure 1C-1J:Starting the Inner Straight Edge sketch.

Figure 1C-1K: Projecting the Center Point and the circular edge.

Figure 1C-1L: Offset lines.

Next, select the Cut tool, choose All in the Extents text field and Midplane for direction; click OK button to create the Cut feature; and rename it Inner Straight Edge Cut in the Model panel.

Next, select the Circular Pattern tool, click the Features button and select the Inner Straight Edge Cut feature from the Model panel; click the Rotation Axis button and the Y-Axis from the; type 48 in the Count text field, and 360 deg in the Angle text field; click the OK button to create additional straight edge cuts along the circular edge of the hole; rename the Circular Pattern feature Inner Straight Edge Cuts in the Model panel.

Figure 1C-1M:Applying
Tangent constraint.

Figure 1C-1N: The rectangular profile of the Inner Straight Edge sketch.

Figure 1C-1P: The Inner Straight Edge Cut feature.

Next, select the Flange tool to add dovetail seams as Flange features on the short straight edges of the circular hole. Select the Flange tool; in the tool’s dialog window (Figure 1C-1D), type 1 in (inch) in the Distance text field and 60.0 in the Angle text field; make sure that the green arrow points outward; if not, then click the Flip Offset button to change the direction; make sure that the outline of the Flange points upward at an angle; if not, then click the Flip Direction button to change the direction; click the

Apply button to create the first dovetail seam Flange feature; repeat the same procedures to create the remaining 47 dovetail seam Flange features; and rename them Inner Sean 1, 2, 3, ... 48 in the Model panel. All dovetail seams that overlays the lateral surface of a cone are completed. Save the file.

Figure 1C-1Q: Using the circular pattern tool.

Figure 1C-1Q: Creating dovetail seams.

Next, click-select the top surface of the circular piece and click-select the Flat Pattern tool; the Flat Pattern window opens (Figure 1C-1R). All features of the circular piece with dovetail seams are listed in the Model panel (Figure 1C-1S).

Congratulations!

In this Module, you have leaned how to create dovetail seams along a circular edge with the Flange tool.

