

In this Module, we will learn how to create a 3D solid model of a truncated right prism in an Inventor Sheet Metal (in).ipt file, which can be used as a Derived Part feature to be placed in another Sheet Metal (in).ipt file for its Work Surface reference geometry, to create the folded model of a sheet metal part wrapping the 3D space of the truncated prism, with Face, Flange and other tools, which are special tools for designing sheet metal parts. The basic procedures to complete this job in Inventor are as follows:

- Creating a 3D solid model of a truncated right prism in an Inventor Sheet Metal (in).ipt file;
- Starting another Inventor Sheet Metal (in).ipt file; using the Derived Component tool to place the 3D model of the truncated hexagon-based right prism as a Derived Part for its Work Surface reference geometry, from the previous Sheet Metal (in).ipt file;
- Selecting the surfaces of the Derived Part; using the Project Geometry tool to project the edge line profiles; and using the Face tool to created sheet metal Face panels with these profiles; and using other tools such as Flange, Contour Flange, Corner Chamfers, and Extrude, to complete the 3D folded model of the sheet metal part; and finally, using the Flat Pattern tool to create the Flat pattern view of the sheet metal part.

These basic procedures will be explained in this Module.

## Section 1: <br> Creating the 3D Solid Model of a Regular Hexagonal Prism

Step 1: Creating a regular hexagon-based right-axis prism
Launch Inventor, start a new Sheet Metal (in).ipt file under the English tab. Hold the Shift key and click-select the XZ Plane, XY Plane, and the Center Point from
the Model panel; right-clock for the shortcut menu and check the Visibility option. The XZ Plane and XY Plane turn light blue and the Center Point turns yellow on the drawing screen. "Sketch1" is created by default in the Model panel. Go to the
View $\rightarrow$ Isometric to switch to an isometric view for better visualization (Figure 1B-1A). Click the Return on the Command Bar to dismiss the default sketch feature. Select the default Sketch1 feature from the Model panel, and press the Delete key on the keyboard to delete it. Click-select the XZ Plane and click the Sketch button from the Command Bar to start a new sketch, and rename it Hexagon Profile in the Model panel. Select the Project Geometry tool and click-select the Center Point either on the drawing screen or from the Model panel to project it onto the new sketch for a snap point; next, click-select the Polygon tool from the Sketch panel; the Polygon tool dialog window opens with 6 in the text field (indicating a 6-sided hexagon) and Inscribed button recessed as default settings (with the Inscribed option, the center point and one of the corner points are used to define a polygon); move the cursor closer to the projected Center Point and click once when the green dot snap indicator appears; move the cursor away horizontally leftwards or rightwards, and click once to establish a corner point (Figure 1B-1C); the basic hexagon profile is completed; right-click anywhere in the drawing screen for the shortcut menu and choose the Done option to exit the Polygon tool. Next, select the Horizontal constraint tool and click the visually horizontal edge line at the bottom of the hexagon actually horizontal; next, select the General Dimension tool, click-select the top and bottom horizontal edge of the hexagon and drag out a linear dimension feature, type 40 in the Edit Dimension text field and check the green check mark to apply the 40-inch "cross-flat" dimension (Figure 1B-1B). Click the Return button from the Command Bar to exit the Hexagon Profile sketch. Save the file as Tut-Truncated Hex Prism Solid.ipt inside a new folder to be created and named Tut-Truncated Hex Prism. Save often at the end of each step throughout the entire project.


Figure 1B-1A: The default Sketch1.


Figure 1B-1B:The Polygon tool with the Inscribed option. The other option is
Circumscribed which selects the center point and the midpoint of an edge to define a Polygon.


Figure 1B-1C:
Extruding the hexagon-based regular right-axis prism.

Next, select the Extrude tool from the Features panel; in the Extrude tool's dialog window, select Join as Type, type 36 (inch) for Distance in the Extents section; and an upward Direction, to create the hexagon-based regular right-axis prism (Figure 1B-1C).

Step 2: Truncating the regular hexagon-based right-axis prism
Select the YZ Plane and click the Sketch button on the Command Bar to start a new sketch; rename it Truncation Profile in the Model panel.


Figure 1B-1D: Selecting the YZ Plane (left); changing the Display mode (middle); The Truncation Profile sketch (right); the Style pull-down menu on the Command Bar (bottom).


Since the YZ Plane is hidden inside the Hex Prism Extrude feature, go to the Display mode selector on the Command Bar, click the inverse black arrow for a pulldown tool icon menu and select the Wireframe Display button to change the Display mode for a better visualization. Next, use the Project Geometry tool to project the Center Point and the two side edges onto the Truncation Profile sketch (when projected, the edges are projected as points since they are perpendicular to the YZ Plane where the Truncation Profile sketch is drawn); use the Line tool to draw a vertical line starting from
the projected Center Point with the help of the green dot snap indicator that appears on the screen at the projected Center Point when the cursor is moved closer to it, and go to the Style pull-down menu on the Command Bar to change its Style from Normal to Centerline; draw two vertical lines, and an inclined line starting from the point projected from one of the edge lines and extending beyond the centerline, also with the help of the green dot snap indicator that appears on the screen when the cursor is moved closer to it; next, draw a horizontal line above the top of the model; next, select the General
Dimension tool to apply an 30-degree angular dimension between the horizontal line and the inclined line; next, use the Trim tool to trim off the unneeded segments of the centerline and the inclined line; next, use the Line tool to draw another inclined line connecting the point of intersection between the centerline and the first inclined line, and the point projected from another edge line of the model. The Truncation Profile sketch is complete (Figure 1B-1D); click the Return button to exit the sketch.


Figure 1B-1E: Truncating the prism with the Extrude tool.


Figure 1B-1F: The features of the model

Next, select the Extrude tool and choose the Cut option for Type, All for Extents and Midplane for Direction, click the OK button to cut the prism with the profile in the Truncation Profile sketch (Figure 1B-1E). The features of the model are listed in the Model panel (Figure 1B-1F). The solid model file is completed. Save and close the file.

## Section 2: <br> Creating the Sheet Metal Part Wrapping The 3D Space of A Regular Hexagonal Prism

The basic procedures of creating the sheet metal part wrapping the 3d space of a regular hexagonal prism in Inventor have been explained in the introductory paragraphs of this Module. They include:

- Placing the Derived Part (Figure 1B-2A);
- Creating Face Profile sketches on the surface of the Derived part (Figure 1B-2B);
- Creating needed Flange features for connecting adjacent Face panels (Figure $1 B-2 C$ );
- Creating needed Corner Chamfers on the ends of Flange features (Figure 1B-2D);
- Creating Work Plane features for the top and base Face panels (Figure 1B2E);
- Creating the top and base Face panels with appropriate Bend features (Figure 1B-2F);
- Completing the 3D folded model and 2D Flat Pattern view of the sheet metal part (Figure 1B-2G).


## Features $\mathbf{~}$

## Derived Component



Figure 1B-2A: Placing the Derived Part.


Figure 1B-2B: Creating Face Profile sketches on the surface of the Derived part.
These procedures will be explained in details in subsequent Modules; and this project will be used to text the students’ ability to independently solve descriptive geometry problems through sheet metal design projects at the end of the course, as a hands-on semester exam or exploration project.


Figure 1B-2C: Creating needed Flange features for connecting adjacent Face panels.


Figure 1B-2D: Creating needed Corner Chamfers on the ends of Flange features.


Figure 1B-2E: Creating Work Plane features for the top and base Face panels.


Figure 1B-2F: Creating the top and base Face panels with appropriate Bend features.


Figure 1B-2G: The 3D folded model and 2D Flat Pattern view of the sheet metal part.
We shall now proceed to the next Module.

