Engineering Analytic Principles and Predictive Computational Skills for K-12 Students:

Presenting a List of High School 9th Grade Age-Possible Fluid Mechanics Topics to Engineering and Technology Educators and Curriculum Developers

Edward Locke

(edwardnlocke@yahoo.com)

Introduction

Rationale for Presenting this List

Problem in the current K-12 engineering curriculum

In my previous article titled *Engineering Analytic Principles and Predictive Computational Skills for K-12 Students: Presenting a List of High School 9th Grade AgePossible Statics Topics to Engineering and Technology Educators and Curriculum Developers*, I have explained one of the problems in the currently predominant practice of K-12 engineering curriculum, which had previously explored by Smith and Wicklein (2007, pp. 2-3) as the "fragmented focus and lack of a clear curriculum framework" which is "detrimental to the potential of the field and have hindered efforts aimed at achieving the stated goals of technological literacy for all students;" and confirmed by an authoritative report issued on September 8, 2009, by the Committee on K-12 Engineering Education established by the National Academy of Engineering and the National Research Council, titled *Engineering in K-12 Education: Understanding the Status and Improving the Prospects* (2009), as the "absence of a clear description of which engineering knowledge, skills, and habits of mind are most important, how they relate to and build on one another, and how and when (i.e., at what age) they should be introduced to students" (2009, pp. 7-8; p. 151).

Conceptual framework for the solution of the problem

In my previous article, I have presented a practical conceptual framework for the definition of defining K-12 age-possible engineering analytic knowledge content, using a four-step procedure; which has been used again for the subject of fluid mechanics:

- (1) Select textbooks and student's solution manual that are among the most popular ones for undergraduate engineering fluid mechanics course;
- (2) Read carefully every paragraph in the body text to find and record the prerequisite science knowledge content needed for each topic (notably physics and chemistry).
- (3) Find the relevant computational formulas to determine and record the mathematics skills needed. Practically speaking, every engineering topic includes mathematically-based formulas or equations, which shall reveal the level of mathematics required for students to comfortably learn the topic's analytic principles and formula-based predictive computational skills.
- (4) Compare the recorded data, i.e., mathematics and science pre-requisites, with the mandates of the Performance Standards for Mathematics and Sciences of the Department of Education of a selected state in the Southern part of the United States, to determine the Grade level for the inclusion of the topic.

Objective of Presenting this List

This *List* is intended to be an "initial list" of high school 9th Grade "age-possible" fluid mechanics topics; whether these topics are actually age-feasible or age-appropriate

could be determined only after actual pedagogic experiment or pilot studies have been conducted and analyzed. However, the presentation of this *List* could constitute the critical first step for the extensive integration of fluid mechanics-related engineering analytic principles and predictive computational skills into a viable K-12 engineering and technology curriculum, in a rational, systemic and cohesive way.

Hopefully, the presentation of this *List* could help improve engineering education in the United States, with the following practical applications:

- (1) <u>K-12 engineering curriculum development</u>: Current K-12 engineering and technology curriculum developers and teachers, in their endeavors to integrate engineering analytic principles and predictive skills into K-12 engineering and technology curriculum, in a cohesive and systematic way, could use this *List* as a reference in the selection of fluid mechanics topics from the main textbooks listed in Table 1, for pedagogic experiment or pilot study aimed at determining if the topics included in the *List* are indeed age-feasible or age-appropriate for high school 9th Grade students.
- (2) <u>Engineering education</u>: K-12 engineering teachers as well as university undergraduate engineering professors could use the *List* as a reference to review pertinent mathematics skills and scientific principles at the start of engineering courses with their students, for the statics topics that require only pre-calculus mathematics skills.
- (3) <u>K-12 mathematics and science education</u>: K-12 teachers could use this *List* as a reference to create extra learning materials focused on the applications of mathematics skills and scientific principles in engineering, and thus, help students to understand the relevance of mathematics skills and scientific principles to practical solution of engineering design problems.

Source of Data

University undergraduate fluid mechanics textbooks and learning materials that have been used as data source in the research are shown in Table 1 and *Figure 1*.

	Main Textbook	Reference Book	Student Solution Manual
Title	Fundamentals of Fluid Mechanics	A Brief Introduction to Fluid	A Brief Introduction to Fluid
	Mechanics, 5 th Edition	Mechanics, 4 th Edition	Mechanics, Student Solutions
			Manual, 4 th Edition
Authors	Bruce M. Munson, Donald F.	Donald F. Young, Bruce R.	Donald F. Young, Bruce R.
	Young, Theodore H. Okiishi	Munson, Theodore H. Okiishi,	Munson, Theodore H. Okiishi,
		Wade W. Huebsch	Wade W. Huebsch
Publisher	John Wiley & Sons, Inc.	John Wiley & Sons, Inc.	John Wiley & Sons, Inc.
Year	2006	2007	2007
ISBN	0-471-67582-2	978-0470039625	978-0470099285
Application	Used for the extraction of fluid mechanics related engineering	Used as a reference book.	Used to double-check for the mathematics and physics principles
	analytic/predictive principles and		and computational skills needed
	computational formulas (the main		for the study of various topics of
	textbook).		fluid mechanics contained in the
			main textbook.

Table 1. Textbook Information

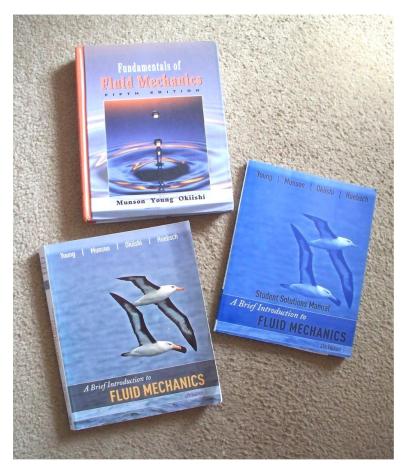
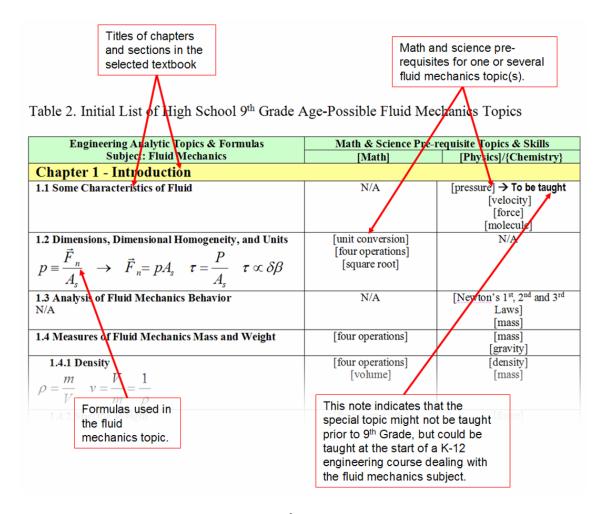


Figure 1. University undergraduate fluid mechanics textbooks and Student's Solutions Manuals used in the research as data source (used at California State University, Los Angeles).

Outcomes of the Research

The outcome of this research is very encouraging. A substantial amount of engineering declarative knowledge content covered in the selected university undergraduate fluid mechanics textbook has been initially determined to be pedagogically possible for 9th Grade high school students, based on the mandates of the Mathematics and Science Performance Standards of a selected state in the United States.

Initial Determination of High School Age-Possible Fluid Mechanics Topics


Table 2 constitutes the *Initial List of High School 9th Grade Age-Possible Fluid Mechanics Topics*, and is the centerpiece of this article. *Figure 2* illustrate how to use this *List*.

The statistic summary of the research project (Table 4) indicates that a significant portion of fluid mechanics knowledge content covered in the selected undergraduate level textbook could possibly be taught to high school students at 9th Grade. 62.2% of all sections, and 51.0% of the volume in the selected main textbook is based on pre-calculus mathematics and on principles of physics students are supposed to learn before or by 9th

Grade, according to the Mathematics and Science Performance Standards of the selected state's Department of Education.

Initial Determination of Pre-Requisite Mathematics and Science Topics

Table 3 constitutes the *Pre-Requisite Mathematics and Science Topics to Be Reviewed before Teaching the Pre-Calculus Portion of Fluid Mechanics Topics to 9*th *Grade Students.* This list includes 24 sets of mathematics principles and skills, as well as 28 sets of physics and chemistry principles and skills that are needed as pre-requisites or as important topics to be reviewed for the effective learning of fluid mechanics topics initially determined as age-possible for 9th Grade students.

Figure 2. The Initial List of High School 9th Grade Age-Possible Fluid Mechanics Topics.

Conclusions and Recommendations

This article has provided (1) a reference list for high school 9th Grade age-possible fluid mechanics topic, and (2) a reference list for the review of mathematics and science pre-requisites. In order to improve K-12 engineering education, the following recommendations and plans are hereby presented for consideration, support and implementation:

- 1. <u>Pilot study</u>: K-12 schools (especially high schools, including chartered high schools) could be found to conduct pilot pedagogic experiments to determine the age-feasibility and age-appropriateness of all fluid mechanics-related analytic knowledge content identified in *Initial List of High School 9th Grade Age-Possible Fluid Mechanics Topics* (Table 2). Likewise, K-12 mathematics and science teachers could use the same *List* as a reference to incorporate pertinent fluid mechanics topics in their respective curriculum.
- 2. <u>Change within the system</u>: We could encourage existing K-12 engineering and technology curriculum developers to use the same *List* as a reference to incorporate fluid mechanics-related engineering knowledge and skills into their previously developed instructional materials, or to create new ones.

References

- Committee on K-12 Engineering Education (2009). *Engineering in K-12 education: Understanding the status and improving the prospects*. Washington, DC: National Academy of Engineering and the National Research Council.
- Smith, P. C., & Wicklein, R. C. (2007). Identifying the essential aspects and related academic concepts of an engineering design curriculum in secondary technology education. Unpublished internal research report, NCETE. Retrieved January 30, 2009 from http://ncete.org/flash/publications.php

Engineering Analytic Topics & Formulas	Math & Science Pre-requisite Topics & Skills	
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 1 - Introduction		
1.1 Some Characteristics of Fluid	N/A	[pressure] → To be taught [velocity] [force] [molecule]
1.2 Dimensions, Dimensional Homogeneity, and Units $p \equiv \frac{\vec{F}_n}{A_s} \rightarrow \vec{F}_n = pA_s \tau = \frac{P}{A_s} \tau \propto \delta\beta$	[unit conversion] [four operations] [square root]	N/A
1.3 Analysis of Fluid Mechanics Behavior N/A	N/A	[Newton's 1 st , 2 nd and 3 rd Laws] [mass]
1.4 Measures of Fluid Mechanics Mass and Weight	[four operations]	[mass] [gravity]
1.4.1 Density $\rho = \frac{m}{V} v = \frac{V}{m} = \frac{1}{\rho}$	[four operations] [volume]	[density] [mass]
$\gamma \equiv \frac{W}{V} = \frac{mg}{V} = \rho g$	[four operations]	[force] [gravity] [density]
1.4.3 Specific Gravity $SG = \frac{\rho}{\rho_{H_2O} @ 4^{\circ}C}$		[pressure] → To be taught
1.5 Ideal Gas Law $p = \rho RT$		[temperature] { absolute temperature } → To be taught [density]
1.7 Compressibility of Fluids	N/A	N/A
1.7.2 Compression and Expansion of Gases $\frac{p}{\rho} = \text{Constant} \frac{p}{\rho^{k}} = \text{Constant} E_{\nu} = p E_{\nu} = kp$	[four operations] [exponent]	[pressure] → To be taught [density]
1.8 Vapor Pressure	N/A	{intermolecular cohesive force} → To be taught [momentum] [pressure] → To be taught
1.9 Surface Tension $2\pi R\sigma = \Delta p \pi R^2 \Delta p = p_i - p_e = \frac{2\sigma}{R}$ $\gamma \pi R^2 h = 2\pi R\sigma \cos\theta \rightarrow h = \frac{2\sigma \cos\theta}{\gamma R}$	[areas of geometric shapes: circle, triangle] [unit conversion] [height] [trigonometric functions]	[force] [mass] [pressure] → To be taught [weight] [gravity]
1.10 A Brief Look Back in History 1.11 Chapter Summary and Study Guide	N/A	N/A

Table 2. Initial List of High School 9th Grade Age-Possible Fluid Mechanics Topics

Engineering Analytic Topics & Formulas	Math & Science Pre-	equisite Topics & Skills
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 2 Fluid Statics		
2.3.1 Incompressible Fluid $\int_{p_1}^{p_2} dp = -\gamma \int_{z_1}^{z_2} dz \rightarrow \begin{cases} p_2 - p_1 = -\gamma(z_2 - z_1) \\ p_1 - p_2 = \gamma(z_2 - z_1) \end{cases}$	[four operations] [integration] → Post- Secondary	[pressure] → To be taught
$ \rightarrow p_1 - p_2 = \gamma h \rightarrow \begin{cases} p_1 = \gamma h + p_2 \\ h = \frac{p_1 - p_2}{\gamma} \end{cases} $ $ p = \gamma h + p_0 = \rho g h + p_0 $	Note: The main Formula $p = \gamma h + p_0 = \rho g h + p_0$ does not need calculus. The calculus-based	
	formulas could be removed.	
2.3.2 Compressible Fluid $p = \rho RT$ $\rho = \frac{p}{RT}$ $\frac{dp}{dz} = -\gamma = -\rho g$ $\frac{dp}{dz} = -\gamma = -\rho g$ $\frac{dp}{dz} = -\frac{gp}{RT} \rightarrow$ $\frac{dp}{dz(p)} = -\frac{gp}{RT(p)}(dz) \frac{dp}{p} = -\frac{g}{RT}dz \rightarrow$ $\int_{p_1}^{p_2} \frac{dp}{p} = \int_{z_1}^{z_2} -\frac{g}{RT}dz = -\frac{g}{R}\int_{z_1}^{z_2} \frac{dz}{T} \rightarrow$ $\int_{p_1}^{p_2} \frac{dp}{p} = \ln \frac{p_2}{p_1} = -\frac{g}{R}\int_{z_1}^{z_2} \frac{dz}{T}$	[four operations] [exponent] [integration] → Post- Secondary [derivative] → Post- Secondary Note: The main formula $p_2 = p_1 \exp\left[-\frac{g(z_2 - z_1)}{RT_0}\right]$ does not need calculus. The calculus-based formulas could be	[pressure] → To be taught {absolute temperature} → To be taught {gas/liquid} → To be taught
$p_1 = p_1 \exp\left[-\frac{g(z_2 - z_1)}{RT_0}\right]$ 2.4 Standard Atmosphere	removed.	[town output]
$T = T_a - \beta z p = p_a \left(1 - \frac{\beta z}{T_a}\right)^{g/R\beta}$	[four operations] [exponent]	[temperature] [pressure] → To be taught [density] [weight]
2.5 Measurement of Pressure	[four operations]	[pressure] → To be taught
$p_{abs} = p_{gage} + p_{atm}$ $p_{atm} = \gamma h + p_{vapor}$		
2.6 Monometry	[four operations] [cylinder]	
2.6.1 Piezometer Tube	[four operations]	
$p = \gamma h + p_0 p_A = \gamma_1 h_1$	[height]	
2.6.2 U-Tube Manometer $p = \gamma h + p_0$ $p_A + \gamma_1 h_1 - \gamma_2 h_2 = 0 \rightarrow$	[four operations]	
$p_A = \gamma_2 h_2 - \gamma_1 h_1 p_A = \gamma_2 h_2$ $p_A + \gamma_1 h_1 - \gamma_2 h_2 - \gamma_3 h_3 = p_B \rightarrow$		
$p_{A} - p_{B} = \gamma_{2}h_{2} + \gamma_{3}h_{3} - +\gamma_{1}h_{1}$		
2.6.3 Inclined-Tube Manometer $p_A + \gamma_1 h_1 - \gamma_2 \ell_2 \sin \theta - \gamma_3 h_3 = p_B$	[four operations] [trigonometric functions]	
$p_{A} - p_{B} = \gamma_{2}\ell_{2}\sin\theta + \gamma_{3}h_{3} - \gamma_{1}h_{1}$ $p_{A} - p_{B} = \gamma_{2}\ell_{2}\sin\theta \rightarrow \ell_{2} = \frac{p_{A} - p_{B}}{\gamma_{2}\sin\theta}$		
2.7 Mechanical and Electronic Pressure Measuring Devices	N/A	N/A

Table 2. (Continued).

Table 2. (Continued).

Engineering Analytic Topics & Formulas	Math & Science Pre-r	equisite Topics & Skills
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 2 Fluid Statics (Continued)		
2.9 Pressure Prism $F_R = p_{av}A = \gamma \left(\frac{h}{2}\right)A$ $F_R = volume = \frac{1}{2}(\gamma k)(bh) = \gamma \left(\frac{h}{2}\right)A$	[four operations] [prism]	[pressure] → To be taught [force]
$F_R = F_1 + F_2 F_R y_A = F_1 y_1 + F_2 y_2$ 2.10 Hydrostatic Force on a Curves Surface		
2.10 Hydrostatic Force on a Curves Surface $F_H = F_2$ $F_v = F_1 + \vec{W}$ $F_R = \sqrt{(F_H)^2 + (F_v)^2}$	[four operations] [Pythagorean Theorem]	[force]
2.11 Buoyancy, Flotation, and Stability N/A 2.11.1 Archimedes' Principle $F_B = F_2 - F_1 - \vec{W} F_2 - F_1 = \gamma(h_2 - h_1)A$ $F_B = \gamma(h_2 - h_1)A - \gamma[(h_2 - h_1)A - V]$ $F_B = \gamma V F_B y_c = F_2 y_1 - F_1 y_1 - \vec{W} y_2$ $Vy_c = V_T y_1 - (V_T - V) y_2$ 2.11.2 Stability N/A	[four operations] [volume]	[force] [weight]
2.13 Chapter Summary and Study Guide	N/A	N/A
Chapter 3 Elementary Fluid Dynamics – T		
3.1 Newton's Second Law $\vec{F} = m\vec{a} \sum (\vec{F}_{P} + \vec{F}_{g}) = m\vec{a}$ $a_{s} = V \frac{\partial V}{\partial s} a_{n} = V \frac{V^{2}}{\Re} \leftarrow V = \vec{V} $	[four operations] [partial derivative] \rightarrow Post-secondary [volume] Note: The main formula $\vec{F} = m\vec{a}$	[Newton's 1 st , 2 nd and 3 rd Laws] → To be taught [force] [speed]
	does not need calculus. The calculus-based formulas could be removed.	
3.2 F = ma along a Streamline $\sum \delta F_s = \delta m a_s = \delta m V \frac{\partial V}{\partial s} = \rho \delta V V \frac{\partial V}{\partial s}$ $\delta \overline{W} = \gamma \delta V$ $\gamma = \rho g \qquad \rightarrow \qquad \delta \overline{W}_s = -\delta \overline{W} \sin \theta = -\gamma \delta X V \sin \theta$ $\delta p_s \approx \frac{\partial p}{\partial s} \frac{\delta s}{2}$ $\delta F_{ps} = (p - \delta p_s) \delta n \delta y - (p + \delta p_s) \delta n \delta y = -2 \delta p_s \delta n \delta y$ $= -\frac{\partial p}{\partial s} \delta s \delta n \delta y = -\frac{\partial p}{\partial s} \delta V$ $\sum \delta F_s = \delta \overline{W}_s + \delta F_{ps} = \left(-\gamma \sin \theta - \frac{\partial p}{\partial s}\right) \delta V$ $-\gamma \sin \theta - \frac{\partial p}{\partial s} = \rho V \frac{\partial V}{\partial s} = \rho a_s$ $-\gamma \frac{dz}{ds} - \frac{dp}{ds} = \frac{1}{2} \rho \frac{d(V^2)}{ds} \rightarrow \qquad dp + \frac{1}{2} \rho d(V^2) + \gamma \ dz = 0$	[four operations] [trigonometric functions] [partial derivative] \rightarrow Post-secondary [sigma notation] Note: The main formulas $\vec{F} = m\vec{a}$ and $p + \frac{1}{2}\rho V^2 + \gamma z$ = constant along a streamline (Bernoulli Equation) do not need calculus. The calculus-based formulas could be removed.	[force] [gravity] [mass] [acceleration]

Engineering Analytic Topics & Formulas	Math & Science Pre-r	equisite Topics & Skills
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 3 Elementary Fluid Dynamics – T		
3.2 F = ma along a Streamline (Continued)	\uparrow	\wedge
$\int \frac{dp}{\rho} + \frac{1}{2}V^2 + gz = C \text{(along a streamline)}$	Refer to the previous page.	Refer to the previous page.
$p + \frac{1}{2}\rho V^2 + \gamma z = \text{constant along a streamline}$		
(Bernoulli Equation)		
3.4 Physical Interpretation $p + \frac{1}{2}\rho V^2 + \gamma z$ = Constant along the streamline	[four operations] [integration] → Past- Secondary	[density] [speed] [gravity]
$p + \rho \int \frac{\mathbf{V}^2}{\Re} dn + \gamma z = \text{constant across the streamline}$	Note: The main formula $p + \frac{1}{2}\rho V^2 + \gamma z$	
$\frac{p}{\gamma} + \frac{V^2}{2g} + z = \text{constant on a streamline}$	2	
$\gamma 2g$	= Constant along the streamline V^2	
	$\frac{p}{\gamma} + \frac{V^2}{2g} + z$	
	= constant on a streamline	
	do not need calculus.	
	The calculus-based formulas could be	
	removed.	
3.5 Static, Stagnation, Dynamic, and Total Pressure	[four operations] [square root]	[pressure] → To be taught [density]
$p_2 = p_1 + \frac{1}{2}\rho V_1^2$		[speed]
$p + \frac{1}{2}V^2 + \gamma z = p_T = \text{constant along a streamline}$		
$p_3 = p + \frac{1}{2}\rho V^2 p_4 = p_1 = p$ $\rightarrow p_3 - p_4 = \frac{1}{2}\rho V^2$		
$V = \sqrt{\frac{2(p_3 - p_4)}{\rho}}$		
3.6 Examples of Use of the Bernoulli Equation	[four operations]	[pressure] → To be taught
$p_1 + \frac{1}{2}\rho V_1^2 + \gamma z_1 = p_2 + \frac{1}{2}\rho V_2^2 + \gamma z_2$	[exponent]	[density] [speed]
3.6.1 Free Jets	[four operations]	
$\int_{\mathbf{V}} \sqrt{2\pi h} \sqrt{2\pi h}$	[exponent]	
$\gamma h = \frac{1}{2} \rho V^2 \longrightarrow \begin{cases} V = \sqrt{2 \frac{\gamma h}{\rho}} = \sqrt{2gh} \\ V = \sqrt{2g(h+H)} \end{cases}$	[square root]	
	F.0	F 1 1. 7
3.6.2 Confined Flows $\rho_1 A_1 V_1 = \rho_2 A_2 V_2 \rightarrow A_1 V_1 = A_2 V_2 \rightarrow Q_1 = Q_2$	[four operations] [exponent] [areas of geometric shapes]	[density] [speed]
3.6.3 Flowrate Measurement	[four operations]	[density]
$p_1 + \frac{1}{2}\rho V_1^2 = p_2 + \frac{1}{2}\rho V_2^2$ $Q = A_1V_1 = A_2V_2$	[exponent] [square root] [areas of geometric	[speed] [pressure] → To be taught [gravity]
	shapes]	

Table 2. (Continued).

Engineering Analytic Topics & Formulas	Math & Science Pre-	equisite Topics & Skills
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 3 Elementary Fluid Dynamics – T	he Bernoulli Equation	n (Continued)
3.6.3 Flowrate Measurement (Continued)	\uparrow	\uparrow
$Q = A_2 \sqrt{\frac{2(p_1 - p_2)}{\rho \left[1 - \left(\frac{A_2}{A_1}\right)^2\right]}}$	Refer to the previous page.	Refer to the previous page.
$p_1 + \frac{1}{2}\rho V_1^2 + \gamma z_1 = p_2 + \frac{1}{2}\rho V_2^2 + \gamma z_2$		
$Q = A_1 V_1 = b V_1 z_1 = A_2 V_2 = b V_2 z_2$		
$p_1 = p_2 = 0 \rightarrow Q = z_2 b \sqrt{\frac{2g(z_1 - z_2)}{1 - \left(\frac{z_2}{z_1}\right)^2}}$		
$Q = C_1 H b \sqrt{2gH} = C_1 b \sqrt{2g} H^{3/2}$		
$z_1 >> z_2 \rightarrow Q = z_2 b \sqrt{2g z_1}$		
3.7 The Energy Line and the Hydraulic Grade Line	[four operations]	[density] [speed]
$\frac{\rho}{\gamma} + \frac{V^2}{2g} + z = \text{constant on a streamline} = H$	[exponent] [square root]	[speed] [gravity]
3.8 Restrictions on Use of the Bernoulli Equation	[four operations]	
3.8.1 Compressibility Effects	[exponent]	
$RT\int \frac{dp}{p} + \frac{1}{2}V^2 + gz = \text{constant}$ $\rho = \frac{p}{PT}$	[logarithmic functions] \rightarrow To be taught or reviewed	
p p 2 RT	as a special skill	
$\frac{V_1^2}{2g} + z_1 + \frac{RT}{g} \ln\left(\frac{p_1}{p_2}\right) = \frac{V_2^2}{2g} + z_2$	[integration] → Post- Secondary	
$C^{1/k}\int p^{-1/k}dp + \frac{1}{2}V^2 + gz = \text{constant}$	Note: The main formulas	
$C^{1/k} \int_{p_1}^{p_2} p^{-1/k} dp = C^{1/k} \left(\frac{k}{k-1} \right) \left[p_2^{(k-1)/k} - p_1^{(k-1)/k} \right]$	$\rho = \frac{p}{RT}$	
$= \left(\frac{k}{k-1}\right) \left(\frac{p_2}{p_1} - \frac{p_1}{p_1}\right)$	And some others do not need calculus. The calculus-based	
$\left(\frac{k}{k-1}\right)\frac{p_1}{p_1} + \frac{V_1^2}{2} + gz_1 = \left(\frac{k}{k-1}\right)\frac{p_2}{p_2} + \frac{V_2^2}{2} + gz_2$	formulas could be removed.	
$\frac{p_2 - p_1}{p_1} = \left[\left(1 + \frac{k - 1}{2} M a_1^2 \right)^{k/k - 1} - 1 \right] \text{ (compressible)}$		
$\begin{vmatrix} \frac{p_2}{p_1} = \frac{V_1^2}{2RT_1} \\ Ma_1 = \frac{V_1}{\sqrt{kRT_1}} \end{vmatrix} \rightarrow \frac{p_2 - p_1}{p_1} = \frac{kMa_1^2}{2} (\text{incompressible})$		
$\frac{p_2 - p_1}{p_1} = \frac{kMa_1^2}{2} \left(1 + \frac{1}{4}Ma_1^2 + \frac{2 - k}{24}Ma_1^4 + \dots \right)$ (compressible)		

Engineering Analytic Topics & Formulas	Math & Science Pre-	equisite Topics & Skills
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 3 Elementary Fluid Dynamics – T	he Bernoulli Equation	n (Continued)
3. 8.3 Rotational Effects	[four operations]	[pressure] \rightarrow To be taught
$p_1 + \frac{1}{2}\rho V_1^2 + \gamma z_1 = p_2 + \frac{1}{2}\rho V_2^2 + \gamma z_2 = \text{constant} = C_{12}$		[density] [speed]
$\begin{cases} V_1 = V_2 = V_0 \\ z_1 = z_2 = 0 \end{cases} \rightarrow C_{12} = \frac{1}{2}\rho V_0^2 + p_0$		
$z_1 = z_2 = 0$ $\} \rightarrow C_{12} = \frac{1}{2}\rho V_0^2 + p_0$		
$p_1 = p_2 = p_0$		
$\begin{bmatrix} V_3 = V_4 = V_0 \\ z_3 = z_4 = h \end{bmatrix}$		
$\begin{vmatrix} z_3 &= z_4 = n \\ \vec{F} &= m\vec{a} \end{vmatrix} \rightarrow C_{34} = C_{12} \rightarrow$		
$ \begin{vmatrix} p_{1} - p_{1} \\ p_{3} = p_{1} - p_{1} \end{vmatrix} $		
$p_3 = p_4$		
$p + \frac{1}{2}\rho V^2 + \gamma z = \text{constant throughout flow}$		
$p_4 = p_5 + \gamma H = \gamma H H = \frac{p_4}{\gamma}$		
3.8.4 Other Restrictions 3.9 Chapter Summary and Study Guide		
Chapter 4 Fluid Kinematics		
4.3 Control Volume and System Representations	[four operations]	[velocity]
$F = \frac{d(mv)}{r}$	[volume]	
$r = \frac{dt}{dt}$	[areas of geometric shapes]	
4.4 The Reynolds Transport Theorem	[four operations]	[velocity]
$B = m \rightarrow b = 1$	[integration] \rightarrow Post-	[acceleration]
$B = mb$ $\begin{cases} B = \frac{mV^2}{2} \rightarrow b = \frac{V^2}{2} \end{cases}$	Secondary.	[mass]
$B = mp$ $B = \frac{1}{2} \rightarrow p = \frac{1}{2}$	The calculus-based formulas from 4.4, 4.4.1 to	[temperature] [momentum]
$\vec{B} = m\vec{V} \rightarrow \vec{b} = \vec{V}$	4.4.6 could be removed.	[momentum]
B: Extensive Property b: Intensive Property		
Infinitesimal fluid particles : $\delta \Psi \to 0$		
4.4.7 Selection of a Control Volume	N/A	N/A
N/A		
4.5 Chapter Summary and study Guide		
N/A		

Engineering Analytic Topics & Formulas	Math & Science Pre-re	equisite Topics & Skills
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 5 Finite Control Volume Analysis		
5.1.2 Fixed, Non-deforming Control Volume $\frac{\partial}{\partial t} \int_{cv} \rho dV \sum \dot{m}_{out} - \sum \dot{m}_{in} = 0 \sum Q_{out} - \sum Q_{in} = 0$ $\dot{m} = \rho AV$ uniformly distributed $\frac{\partial}{\partial t} \int_{cv} \rho dV \text{over the opening in the}$ control surface (one - dimensional flow) $\dot{m} = \rho_1 A_1 \overline{V_1} = \rho_2 A_2 \overline{V_2} Q = A_1 \overline{V_1} = A_2 \overline{V_2}$ $\sum \dot{m}_{in} = \sum \dot{m}_{out}$	[four operations] [analytic geometry] \rightarrow 12 th (To be taught or reviewed as a special skill) [volume] [areas of geometric shapes] [integration] \rightarrow 12 th (To be taught or reviewed as a special skill) [sigma notation] Note: The main formula $\dot{m} = \rho_1 A_1 \overline{V_1} = \rho_2 A_2 \overline{V_2}$ $Q = A_1 \overline{V_1} = A_2 \overline{V_2}$ $\sum \dot{m}_{in} = \sum \dot{m}_{out}$ are not based on calculus. The calculus-based formulas could be	[mass] [density] [velocity]
5.2 Norston's Second Law The Lincor Momentum	removed.	N/A
5.2 Newton's Second Law – The Linear Momentum and Moment-of-Momentum Equation	N/A	11/21
N/A		
5.3.3 Comparison of the Energy Equation with the Bernoulli Equation $\dot{m} \left[\stackrel{\vee}{u_{out}} \stackrel{\vee}{u_{in}} + \frac{p_{out}}{\rho} - \frac{p_{in}}{\rho} + \frac{V_{out}^2 - V_{in}^2}{2} + g(z_{out} - z_{in}) \right] = \dot{Q}_{net}$ $\frac{p_{out}}{\rho} + \frac{V_{out}^2}{2} + gz_{out} = \frac{p_{in}}{\rho} + \frac{V_{in}^2}{2} + gz_{in} - \left(\stackrel{\vee}{u_{out}} \stackrel{\vee}{-u_{in}} - q_{net} \right)$ $q_{net} = \frac{\dot{Q}_{net in}}{\dot{m}}$ $p_{out} + \frac{\rho V_{out}^2}{2} + \gamma z_{out} = p_{in} + \frac{\rho V_{in}^2}{2} + \gamma z_{in} \gamma = \rho g \rightarrow \frac{\gamma}{\rho} = g$ $\frac{\left(p_{out} + \frac{\rho V_{out}^2}{2} + \gamma z_{out} \right)}{\rho} = \frac{\left(p_{in} + \frac{\rho V_{in}^2}{2} + \gamma z_{in} \right)}{\rho} \rightarrow$ $\frac{p_{out}}{\rho} + \frac{V_{out}^2}{2} + gz_{out} = \frac{p_{in}}{\rho} + \frac{V_{in}^2}{2} + gz_{in}$ $\stackrel{\vee}{\nu} \qquad \qquad$	[four operations] [areas of geometric shapes] [volume] [derivatives] → Post- Secondary The calculus-based formulas could be removed.	[velocity] [gravity] [density] [mass]

Table 2. (Continued).

Table 2. (Continued).

Engineering Analytic Topics & Formulas	Math & Science Pre-	equisite Topics & Skills
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 5 Finite Control Volume Analysis (, ,	
5.33 Comparison of the Energy Equation with the Bernoulli Equation $\frac{P_{out}}{\rho} + \frac{V_{out}^2}{2} + gz_{out} = \frac{p_{in}}{\rho} + \frac{V_{in}^2}{2} + gz_{in} - \log s$ $\frac{in}{m} \left[\overset{\vee}{u}_{out} - \overset{\vee}{u}_{in} + \frac{p_{out}}{\rho} - \frac{p_{in}}{\rho} + \frac{V_{out}^2 - V_{in}^2}{2} + g(z_{out} - z_{in}) \right]$ $= \frac{\dot{Q}_{net}}{\rho} + \frac{\dot{V}_{out}^2}{2} + gz_{out} = \frac{p_{in}}{\rho} + \frac{V_{in}^2}{2} + gz_{in} + w_{shaft} - \frac{v_{in}}{net in} - \frac{v_{in}}{\rho} + \frac{V_{out}^2}{2} + gz_{out} = \frac{p_{in}}{\rho} + \frac{V_{in}^2}{2} + gz_{in} + w_{shaft} - \frac{v_{in}}{net in} - \frac{v_{in}}{\rho} + \frac{v_{in}^2}{2} + gz_{in} + \frac{w_{shaft}}{net in} - \frac{1}{\rho} + \frac{v_{out}}{2} + gz_{out} = \frac{p_{in}}{\rho} + \frac{V_{in}^2}{2} + gz_{in} + \frac{w_{shaft}}{net in} - \frac{1}{\rho} + \frac{v_{out}}{2} + gz_{out} = \frac{p_{in}}{\rho} + \frac{V_{in}^2}{2} + gz_{in} + \frac{w_{shaft}}{net in} - \frac{1}{\rho} + \frac{v_{out}}{2} + gz_{out} = \frac{p_{in}}{\rho} + \frac{V_{in}^2}{2} + gz_{in} + \frac{w_{shaft}}{net in} - \frac{1}{\rho} + \frac{v_{out}}{2} + gz_{out} = \frac{p_{in}}{\rho} + \frac{V_{in}^2}{2} + gz_{in} + \frac{w_{shaft}}{net in} - \frac{1}{\rho} + \frac{v_{out}}{2} + gz_{out} = \frac{p_{in}}{\rho} + \frac{V_{in}^2}{2} + gz_{in} + \frac{w_{shaft}}{net in} - \frac{1}{\rho} + \frac{v_{out}}{2} + \frac{v_{out}}{2} + gz_{in} + \frac{w_{shaft}}{net in} - \frac{1}{\rho} + \frac{v_{out}}{2} + \frac$	[four operations] [areas of geometric shapes] [volume] [derivatives] → Post- Secondary	[velocity] [gravity] [density] [mass]
$h_{T} = -(h_{s} + h_{L})_{T} h_{p} = (h_{s} + h_{L})_{p}$ 5.3.4 Application of the Energy Equation to Non- uniform Flow $\int_{cs} \frac{V^{2}}{2} \rho \vec{V} \cdot \hat{n} dA = \dot{m} \left(\frac{\alpha_{out} \vec{V}_{out}^{2}}{2} - \frac{\alpha_{in} \vec{V}_{in}^{2}}{2} \right)$ $\frac{\dot{m} \alpha \vec{V}^{2}}{2} = \int_{A} \frac{\vec{V}^{2}}{2} \rho \vec{V} \cdot \hat{n} dA = \dot{m} \left(\frac{w_{out} \vec{V}_{out}}{2} - \frac{\omega_{in} \vec{V}_{in}}{2} \right)$ $\frac{\dot{m} \alpha \vec{V}^{2}}{2} = \int_{A} \frac{\vec{V}^{2}}{2} \rho \vec{V} \cdot \hat{n} dA = \dot{m} \left(\frac{\omega_{out} \vec{V}_{in}}{\rho} + \frac{\omega_{out} \vec{V}_{out}}{2} + gz_{out} \right)$ $\frac{p_{out}}{\rho} + \frac{\alpha_{out} \vec{V}_{out}}{2} + gz_{out} = \frac{p_{in}}{\rho} + \frac{\alpha_{in} \vec{V}_{in}^{2}}{2} + gz_{in} + \frac{w_{shaft}}{net in} - loss \right) (\rho)$ \rightarrow $p_{out} + \frac{\rho \alpha_{out} \vec{V}_{out}^{2}}{2} + gz_{out} = p_{in} + \frac{\rho \alpha_{in} \vec{V}_{in}^{2}}{2} + gz_{in} + \rho w_{shaft} - loss \right) (\rho)$ $\frac{\left(\frac{p_{out}}{\rho} + \frac{\alpha_{out} \vec{V}_{out}^{2}}{2} + gz_{out} = \frac{p_{in}}{\rho} + \frac{\alpha_{in} \vec{V}_{in}^{2}}{2} + gz_{in} + \frac{\omega_{shaft}}{net in} - loss \right)}{g}$ \rightarrow	[four operations] [areas of geometric shapes] [volume] [integration] \rightarrow Post- Secondary Note: The main formulas $\frac{p_{out}}{\gamma} + \frac{\alpha_{out}\overline{V}_{out}^2}{2g} + z_{out}$ $= \frac{p_{in}}{\gamma} + \frac{\alpha_{in}\overline{V}_{in}^2}{2g} + z_{in}$ $+ \frac{\frac{w_{shaft}}{net in}}{g} - h_L$ is based on pre-calculus mathematics. Calculus- based formulas used to derive this formula could be removed from 9 th Grade classroom instruction.	[velocity] [gravity] [density] [mass]

Engineering Analytic Topics & Formulas	Math & Science Pre-	requisite Topics & Skills
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 5 Finite Control Volume Analysis (C		1
5.3.4 Application of the Energy Equation to Non- uniform Flow (Continued)	\uparrow	\uparrow
$\frac{p_{out}}{\gamma} + \frac{\alpha_{out}\overline{V}_{out}^2}{2g} + z_{out} = \frac{p_{in}}{\gamma} + \frac{\alpha_{in}\overline{V}_{in}^2}{2g} + z_{in} + \frac{w_{shaff}}{g} - h_L$	Refer to the previous page.	Refer to the previous page.
5.3.5 Combination of the Energy Equation and the Moment-of-momentum Equation	[four operations]	[heat] [temperature]
$\eta = \frac{\frac{w_{shaft} - \log s}{\frac{net in}{w_{shaft}}}}{\frac{w_{shaft}}{\frac{net in}{net in}}}$		
5.4.4 Application of the Loss Form of the Energy Equation $\frac{p_2}{\rho} + \frac{V_2^2}{2} + gz_2 = \frac{p_1}{\rho} + \frac{V_1^2}{2} + gz_1 \int_2^2 \frac{dp}{\rho} + \frac{V_2^2}{2} + gz_2 = \frac{V_1^2}{2} + gz_1$ $\frac{p}{\rho^k} = \text{constant} \int_1^2 \frac{dp}{\rho} = \frac{k}{k-1} \left(\frac{p_2}{\rho_2} - \frac{p_1}{\rho_1}\right)$ $\frac{k}{k-1} \frac{p_2}{\rho_2} + \frac{V_2^2}{2} + gz_2 = \frac{k}{k-1} \frac{p_1}{\rho_1} + \frac{V_1^2}{2} + gz_1$	[four operations] [exponent] [derivative] \rightarrow Post- Secondary [partial derivative] \rightarrow Post-Secondary [integration] \rightarrow Post- Secondary Note: The main formula $\frac{k}{k-1}\frac{p_2}{\rho_2} + \frac{V_2^2}{2} + gz_2$ $= \frac{k}{k-1}\frac{p_1}{\rho_1} + \frac{V_1^2}{2} + gz_1$ is not based on calculus. The calculus-based formulas could be removed.	[velocity] [density] [pressure] → To be taught [gravity]
5.5 Chapter Summary and Study Guide N/A	N/A	N/A
Chapter 8 Viscous Flow in Pipes		
8.1 General Characteristics of Pipe Flow 8.1.1 Laminar of Turbulent Flow $Re = \frac{\rho VD}{\mu}$ 8.1.2 Entrance Region and Fully Developed Flow $\frac{\ell_e}{D} = 0.06 \text{ Re (for turbulent flow)}$ $\frac{\ell_e}{D} = 4.4 (\text{Re})^{1/6} (\text{for turbulent flow})$ $10^4 < \text{Re} < 10^5$	[four operations] [coordinate system] [exponent]	[mass] [density] [force] [pressure] → To be taught [velocity] [momentum]
8.2.3 From Dimensional Analysis $\Delta p = F(V, \ell, D, \mu) \frac{D}{\mu V} \Delta p = \phi\left(\frac{\ell}{D}\right) \phi\left(\frac{\ell}{D}\right) = \frac{C\ell}{D} C = \text{constant}$ $\frac{D}{\mu V} \Delta p}{\mu V} = \frac{C\ell}{D} \frac{\Delta p}{\ell} = \frac{C\mu V}{D^2} Q = AV = \frac{(\pi/4C)\Delta p D^4}{\mu \ell}$	[four operations] [exponent]	[force] [velocity] [pressure] → To be taught [density] Note: Special topics from 7.1 (Dimensional Analysis) need to be taught

2. (Continued).		
Engineering Analytic Topics & Formulas	Math & Science Pre-requisite Topics & Skills	
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
oter 8 Viscous Flow in Pipes (Continued))	
3 From Dimensional Analysis (Continued)	\uparrow	\uparrow
$\frac{2\mu\ell V}{D^2} \frac{\Delta p}{\frac{1}{2}\rho V^2} = \frac{\left(32\mu\ell V/D^2\right)}{\frac{1}{2}\rho V^2} = 64\left(\frac{\mu}{\rho VD}\right)\left(\frac{\ell}{D}\right) = \frac{64}{\text{Re}}\left(\frac{\ell}{D}\right)$	Refer to the previous page.	Refer to the previous page.
$\frac{\ell}{D}\frac{\rho V^2}{2} f = \Delta p \left(\frac{D}{\ell}\right) \left(\frac{\rho V^2}{2}\right) f = \frac{64}{\text{Re}} f = \frac{8\tau_w}{\rho V^2}$		
4 Energy Considerations	[four operations]	[pressure] → To be taught
$z_1 \frac{V_1^2}{2g} + z_1 = \frac{p_2}{\gamma} + \alpha_2 \frac{V_2^2}{2g} + z_2 + h_L$	[trigonometric functions]	[gravity]
$z_1 \left(-\frac{p_2}{\gamma} + z_1 \right) = h_L$		
$z_2 + \Delta p z_2 - z_1 = \ell \sin \theta$		
$t\ell = \frac{4\ell \tau_w}{2}$		

Table 2. (Continued).

Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 8 Viscous Flow in Pipes (Continued))	
8.2.3 From Dimensional Analysis (Continued)	\uparrow	\uparrow
$\Delta p = \frac{32\mu\ell V}{D^2} \frac{\Delta p}{\frac{1}{2}\rho V^2} = \frac{\left(32\mu\ell V/D^2\right)}{\frac{1}{2}\rho V^2} = 64\left(\frac{\mu}{\rho VD}\right)\left(\frac{\ell}{D}\right) = \frac{64}{\text{Re}}\left(\frac{\ell}{D}\right)$	Refer to the previous page.	Refer to the previous page.
$\Delta p = f \frac{\ell}{D} \frac{\rho V^2}{2} f = \Delta p \left(\frac{D}{\ell} \right) \left(\frac{\rho V^2}{2} \right) f = \frac{64}{\text{Re}} f = \frac{8\tau_w}{\rho V^2}$		
8.2.4 Energy Considerations	[four operations]	[pressure] → To be taught
$\frac{p_1}{\gamma} + \alpha_1 \frac{V_1^2}{2g} + z_1 = \frac{p_2}{\gamma} + \alpha_2 \frac{V_2^2}{2g} + z_2 + h_L$	[trigonometric functions]	[gravity]
$\left(\frac{p_1}{\gamma} + z_1\right) - \left(\frac{p_2}{\gamma} + z_1\right) = h_L$		
$p_1 = p_2 + \Delta p z_2 - z_1 = \ell \sin \theta$		
$h_L = \frac{2\tau\ell}{\gamma r} h_L = \frac{4\ell \tau_w}{\gamma D}$		
8.3.5 Chaos and Turbulence N/A	N/A	N/A
8.4 Dimensional Analysis of Pipe Flow $h_L = h_{L \text{ major}} + h_{L \text{ minor}}$	[four operations]	Note: Special topics from 7.1 (Dimensional Analysis) need to be taught
8.4.1 Major Losses $h_{L} = h_{\text{Lmajor}} + h_{\text{Lminor}} \qquad \Delta p = F(V, D, \ell, \varepsilon, \mu, \rho)$ $\frac{\Delta p}{\frac{1}{2}\rho V^{2}} = \tilde{\phi}\left(\frac{\rho VD}{\mu}, \frac{\ell}{D}, \frac{\varepsilon}{D}\right) \text{Re} = \frac{\rho VD}{\mu} \qquad \frac{\Delta p}{\frac{1}{2}\rho V^{2}} = \frac{\ell}{D}\phi\left(\text{Re}, \frac{\varepsilon}{D}\right)$ $f = \phi\left(\text{Re}, \frac{\varepsilon}{D}\right) \qquad \frac{p_{1}}{\gamma} + \alpha_{1}\frac{V_{1}^{2}}{2g} + z_{1} = \frac{p_{2}}{\gamma} + \alpha_{2}\frac{V_{2}^{2}}{2g} + z_{2} + h_{L}$ $h_{\text{Lmajor}} = f\frac{\ell}{D}\frac{V^{2}}{2g}$ $p_{1} - p_{2} = \gamma(z_{2} - z_{1}) + \gamma h_{L} = \gamma(z_{2} - z_{1}) + f\frac{\ell}{D}\frac{\rho V^{2}}{2}$ $\frac{1}{\sqrt{f}} = -2.0\log\left(\frac{\varepsilon/D}{3.7} + \frac{2.51}{\text{Re}\sqrt{f}}\right)$ 8.4.2 Minor Losses $K_{L} = \frac{h_{\text{Lminor}}}{V^{2}/2g} = \frac{\Delta p}{\frac{1}{2}\rho V^{2}} \qquad \Delta p = K_{L}\frac{1}{2}\rho V^{2} \qquad h_{\text{Lminor}} = K_{L}\frac{V^{2}}{2g}$ $K_{L} = \phi(geometry, \text{Re}) \qquad h_{\text{Lminor}} = K_{L}\frac{V^{2}}{2g} = f\frac{\ell_{eq}}{D}\frac{V^{2}}{2g}$ $\ell_{eq} = \frac{K_{L}D}{f}$ $A_{1}V_{1} = A_{3}V_{3} \qquad p_{1}A_{3} - p_{3}A_{3} = \rho A_{3}V_{3}(V_{3} - V_{1})$ $\frac{p_{1}}{\gamma} + \frac{V_{1}^{2}}{2g} = \frac{p_{3}}{\gamma} + \frac{V_{3}^{2}}{2g} + h_{L} \qquad K_{L} = \frac{h_{L}}{V_{1}^{2}/2g} \qquad K_{L} = \left(1 - \frac{A_{1}}{A_{2}}\right)^{2}$	[four operations] [areas of geometric shapes: circle, triangle] [logarithmic functions] (To be taught or reviewed as a special skill) [exponent] [square root] [graph]	[velocity] [pressure] → To be taught [force] [gravity] [density] Note: Special topics from 7.1 (Dimensional Analysis) need to be taught
$C_{p} = \left(p_{2} - p_{1}\right)\left(\frac{\rho V_{1}^{2}}{2}\right)$		

Engineering Analytic Topics & Formulas	Math & Science Pre-1	equisite Topics & Skills
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 8 Viscous Flow in Pipes (Continued)		
8.4.3 Noncircular Conduits $f = \frac{C}{\text{Re}_h} \text{Re}_h = \frac{\rho V D_h}{\mu} D_h = \frac{4A}{P} = \frac{4(\pi D^2/4)}{\pi D} = D$ $h_L = f \frac{(\ell/D_h)V^2}{2g}$ 8.5 Pipe Flow Examples	[four operations] [exponent] [areas of geometric shapes]	[velocity] [gravity] [density]
N/A 8.5.1 Single Pipes	[four operations]	[velocity]
N/A 8.5.2 Multiple Pipe Systems N/A	[exponent] [areas of geometric shapes]	[gravity] [density]
8.6 Pipe Flowrate Measurement 8.6.1 Pipe Flowrate Meters $Q_{ideal} = A_2 V_2 = A_2 \sqrt{\frac{2(p_1 - p_2)}{\rho(1 - \beta^4)}} Q = A_1 V_1 = A_2 V_2$ $\frac{p_1}{\gamma} + \frac{V_1^2}{2g} = \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + h_L Q = C_0 Q_{ideal} = C_0 A_0 \sqrt{\frac{2(p_1 - p_2)}{\rho(1 - \beta^4)}}$	[four operations] [exponent] [square root] [areas of geometric shapes]	[velocity] [pressure] → To be taught [gravity] [density]
$\gamma 2g \gamma 2g \qquad $		
8.6.2 Volume Flow Meters N/A 8.7 Chapter Summary and Study Guide	N/A	N/A
N/A		
Chapter 9 Flow over Immersed Bodies		-
9.1 General External Flow Characteristics 9.1.1 Lift and Drag Concepts $dF_x = (p \ dA)\cos\theta + (\tau_w \ dA)\sin\theta$ $dF_y = -(p \ dA)m\theta + (\tau_w \ dA)\cos\theta$ \rightarrow $\vec{D} = \int dF_x = \int p \ \cos\theta \ dA + \int \tau_w \ \sin\theta \ dA$ $\vec{L} = \int dF_y = -\int p \ \sin\theta \ dA + \int \tau_w \ \cos\theta \ dA$ $C_L = \frac{\vec{L}}{\frac{1}{2}\rho U^2 A} C_D = \frac{\vec{D}}{\frac{1}{2}\rho U^2 A}$	[four operations] [areas of geometric shapes] [trigonometric functions] [integration] → Post- Secondary [derivative] → Post- Secondary Note: The main formulas	[force]
$\frac{1}{2}\rho U^2 A \qquad \frac{1}{2}\rho U^2 A$	$C_{L} = \frac{\vec{L}}{\frac{1}{2}\rho U^{2}A}$ $C_{D} = \frac{\vec{D}}{\frac{1}{2}\rho U^{2}A}$ are not based on calculus. The calculus-based formulas could be removed.	

Table 2. (Continued).

Table 2. (Con	tinued).
---------------	----------

Engineering Analytic Topics & Formulas	Math & Science Pre-	requisite Topics & Skills
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 9 Flow over Immersed Bodies Con		
9.1.2 Characteristics of Flow Past an Object N/A	N/A	[force] [Reynolds Number] → To be taught as special topic
9.3 Drag $C_{D} = \frac{\vec{D}}{\frac{1}{2}\rho U^{2}A} C_{D} = \phi(shape, \operatorname{Re}, Ma, Fr, \varepsilon/\ell)$ 9.3.1 Friction Drag	[four operations] [areas of geometric shapes]	[force] [density]
$ec{D}_f = rac{1}{2} ho U^2 b \ell C_{Df}$		
9.3.2 Pressure Drag $D_{p} = \int \rho \cos \theta dA$ $C_{Dp} = \frac{\vec{D}_{p}}{\frac{1}{2}\rho U^{2}A} = \frac{\int \rho \cos \theta dA}{\frac{1}{2}\rho U^{2}A} = \frac{\int C_{p} \cos \theta dA}{A}$ $\vec{D} = f(U, \ell, \mu) \vec{D} = C\mu\ell U C_{D} = \frac{\vec{D}}{\frac{1}{2}\rho U^{2}\ell^{2}} = \frac{2C\mu\ell U}{\rho U^{2}\ell^{2}} = \frac{2C}{Re}$	[four operations] [areas of geometric shapes] [integration] → Post- Secondary The calculus-based formulas could be removed.	[force] [density]
9.3.3 Drag Coefficient Data and Examples 9.4 Lift 9.4.1 Surface Pressure Distribution $C_L = \frac{\vec{L}}{\frac{1}{2}\rho U^2 A}$ $C_L = \phi(shape, \operatorname{Re}, Ma, Fr, \varepsilon/\ell)$ 9.4.2 Circulation	[four operations] [areas of geometric shapes]	
N/A 9.5 Chapter Summary and Study Guide	N/A	N/A
Chapter 10 Open Channel Flow 10.1 General Characteristics of Open-Channel Flow $\operatorname{Re} = \rho V R_h / \mu Fr = V / (g\ell)^{1/2}$	[four operations] [exponent] [trigonometric functions] [ellipse] → To be taught or reviewed as a special topic	[velocity] [gravity]
10.2 Surface Waves 10.2.1 Wave Speed $- cyb = (-c + \delta V)(y + \delta y)b$ $c = \frac{(y + \delta y)\delta V}{\delta y} \qquad $	[four operations] [square root] [trigonometric functions] [derivative] → Post- Secondary The calculus-based formulas could be removed.	[velocity] [speed] [gravity]

Table 2. (Continued).

Engineering Analytic Topics & Formulas	Math & Science Pre-requisite Topics & Skills	
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 10 Open Channel Flow (Continue		
10.2 Surface Waves	↑	\uparrow
10.2.1 Wave Speed	Refer to the previous	Refer to the previous page.
$\frac{V^2}{2g} + y = \text{constant}$	page.	Refer to the previous page.
2g	Puger	
$\delta V = \alpha \qquad - \frac{V \delta V}{\delta V} + \delta v = 0$		
$\frac{\delta V}{\delta y} = \frac{g}{c} c = \sqrt{gy} \frac{V \delta V}{g} + \delta y = 0$ $y \delta V + V \delta y = 0$		
$\partial y \mathcal{E} \qquad \qquad y \partial V + V \partial y = 0$		
$\frac{\delta y}{y} \ll 1 \to c \approx \sqrt{gy} \left(1 + \frac{\delta y}{y} \right)^{1/2}$		
10.2.1 Wave Speed (Continued)	[four operations]	[velocity]
$\left[g\lambda, (2\pi y)\right]^{1/2}$	[square root]	[speed]
$c = \left[\frac{g\lambda}{2\pi} \tanh\left(\frac{2\pi y}{\lambda}\right)\right]^{1/2} y >> \lambda \to c = \sqrt{\frac{g\lambda}{2\pi}}$	[trigonometric functions]	[gravity]
$(2\pi y)$, y	[analytic geometry: hyperbolic tangent] Post-	
$\tanh\left(\frac{2\pi y}{\lambda}\right) \to 1 as \frac{y}{\lambda} \to \infty$	secondary \rightarrow To be taught	
$(2\pi y)$ $2\pi y$ y	[derivative] \rightarrow Post-	
$ \tanh\left(\frac{2\pi y}{\lambda}\right) \to \frac{2\pi y}{\lambda} as \frac{y}{\lambda} \to 0 $	Secondary	
	The calculus-based	
	formulas could be	
	removed.	
10.2.2 Froude Number Effects N/A	N/A	[velocity] [speed]
10/A 10.3 Energy Considerations	[four operations]	[velocity]
	[exponent]	[gravity]
$z_1 - z_2 = S_0 \ell$		[potential energy]
$\frac{p_1}{\gamma} + \frac{V_1^2}{2g} + z_1 = \frac{p_2}{\gamma} + \frac{V_2^2}{2g} + z_2 + h_L \frac{p_1}{\gamma} = y_1 \qquad \} \rightarrow$		
$\frac{p_2}{\gamma} = y_2$		
$V_1^2 = V_2^2$		
$y_1 + \frac{V_1^2}{2g} + S_0 \ell = y_2 + \frac{V_2^2}{2g} + h_L$		
$S_f = \frac{h_L}{\ell} \rightarrow y_1 - y_2 = \frac{\left(V_2^2 - V_1^2\right)}{2g} + \left(S_f - S_0\right)\ell$		
$S_{\ell} = 0 \qquad \qquad$		
$\begin{cases} S_f = 0 \\ S_0 = 0 \end{cases} \longrightarrow y_1 - y_2 = \frac{(V_2^2 - V_1^2)}{2g} \end{cases}$		
10.3.1 Specific Energy V^2	[four operations] [derivative] → Post-	[energy]
$E = y + \frac{V^2}{2g} E_1 = E_2 + (S_f - S_0)\ell E = y + \frac{q^2}{2gy^2}$	Secondary	[gravity] [velocity]
$\frac{dE}{dy} = 1 - \frac{q^2}{gy^3} = 0 y_c = \left(\frac{q^2}{g}\right)^{1/3} E_{\min} = \frac{3y_c}{2}$	The calculus-based formulas could be removed.	
$V_{c} = \frac{q}{y_{c}} = \frac{\left(y_{c}^{3/2}g^{1/2}\right)}{y_{c}} = \sqrt{gy_{c}} Fr \equiv V_{c} / \left(gy_{c}\right)^{1/2} = 1$	removeu.	
10.4 Uniform Depth Channel Flow	[areas of geometric	[velocity]
10.4.1 Uniform Flow Approximations	shapes]	[stress] \rightarrow To be taught
N/A	[perimeter]	

Engineering Analytic Topics & Formulas		requisite Topics & Skills
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 10 Open Channel Flow (Continued)		
10.4.2 The Chezy and Manning Equations $\sum F_x = \rho Q(V_2 - V_1) = 0 F_1 - F_2 - \pi_w P\ell + \vec{W} \sin \theta = 0$ $\sum F_x = 0$ $\tau_w = \frac{\vec{W} \sin \theta}{P\ell} = \frac{\vec{W}S_0}{P\ell}$ $r_w = \frac{\gamma A\ell S_0}{P\ell} = \gamma R_h S_0$ $\tau_w = K\rho \frac{V^2}{2} K\rho \frac{V^2}{2} = \gamma R_h S_0$ $V = C\sqrt{R_h S_0}$ $V = \frac{R_h^{2/3} S_0^{1/2}}{n}$ $V = \frac{K_h^{2/3} S_0^{1/2}}{n}$	[four operations] [exponent] [areas of geometric shapes] [trigonometric functions]	[pressure] → To be taught [velocity]
$\frac{10.4.3 \text{ Uniform Depth Examples}}{10.4.3 \text{ Uniform Depth Examples}}$	[four operations]	[pressure] → To be taught
N/A 10.5 Gradually Varied Flow N/A 10.5.1 Classification of Surface Shapes N/A 10.5.2 Examples of Gradually Varied Flows	[exponent] [areas of geometric shapes] [trigonometric functions]	[velocity]
N/A 10.6 Rapidly Varied Flow	[four operations]	[force]
N/A	[exponent]	[velocity]
$ \frac{10A}{10.6.1 \text{ The Hydraulic Jump}} = 10.6.1 \text{ The Hydraulic Jump} = \rho V_1 y_1 b (V_2 - V_1) = \rho V_1 y_1 b (V_2 - V_1) = F_1 - F_2 = \rho Q (V_2 - V_1) = \rho V_1 y_1 b (V_2 - V_1) = F_1 = p_{c1} A_1 = \frac{\gamma y_1^2 b}{2} p_{c1} = \frac{\gamma y_2}{2} = F_2 A_2 = \frac{\gamma y_2^2 b}{2} p_{c1} = \frac{\gamma y_2}{2} = \frac{\gamma y_2}{2} = \frac{\gamma y_2}{2} = \frac{\gamma y_2}{2} = \frac{\gamma y_1 y_1}{g} (V_2 - V_1) = \frac{\gamma y_1^2 y_1}{2g} = y_2 + \frac{V_2^2}{2g} + h_L = \frac{y_1^2 y_2}{2g} - \frac{y_2^2}{2} = \frac{V_1 y_1}{g} \left(\frac{V_1 y_1}{y_2} - V_1\right) = \frac{V_1^2 y_1}{g y_2} (y_1 - y_2) = \frac{V_1^2 y_1}{g y_2} \left(\frac{y_2}{y_1}\right)^2 + \left(\frac{y_2}{y_1}\right) - 2Fr_1^2 = 0 Fr_1 = \frac{V_1}{\sqrt{g y_1}} = \frac{1}{2} \left(-1 \pm \sqrt{1 + 8Fr_1^2}\right) = \frac{Y_2}{y_1} = \frac{1}{2} \left(-1 \pm \sqrt{1 + 8Fr_1^2}\right) = \frac{Y_2}{y_1} = 1 - \frac{y_2}{y_1} + \frac{Fr_1^2}{2} \left[1 - \left(\frac{y_1}{y_2}\right)^2\right] $	[square root]	[gravity] [pressure] → To be taught

Table 2. (Continued).

Table 2. (Continued).

Engineering Analytic Topics & Formulas Math & Science Pre-requisite Topics & Skills		quisite Topics & Skills
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 10 Open Channel Flow (Continued	d)	
10.6.2 Sharp-Crested Weirs $\frac{p_A}{\gamma} + \frac{V_1^2}{2g} + z_A = (H + P_w - h) + \frac{u_2^2}{2g} u_2 = \sqrt{2g\left(h + \frac{V_1^2}{2g}\right)}$ $Q = \int_{(2)} u_2 dA = \int_{h=0}^{h=H} u_2 \ell dh$	[four operations] [exponent] [square root] [trigonometric functions] [integration] → Post- Secondary	[velocity] [gravity]
$\ell = b \rightarrow Q = \sqrt{2g} b \int_0^H \left(h + \frac{V_1^2}{2g} \right)^{1/2} dh$	Note: The main formulas are NOT based on calculus.	
$Q = \frac{2}{3}\sqrt{2gb} \left[\left(H + \frac{V_1^2}{2g} \right)^{3/2} - \left(\frac{V_1^2}{2g} \right)^{3/2} \right] \frac{P_w >> H}{\frac{V_1^2}{2g} << H} \right] \rightarrow$	The calculus-based formulas could be removed.	
$Q = \frac{2}{3}\sqrt{2g}H^{3/2} Q = C_{wr}\frac{2}{3}\sqrt{2g}bH^{3/2} C_{wr} = 0.611 + 0.075 \left(\frac{1}{2} + \frac{1}{3}\sqrt{2g}bH^{3/2} - \frac{1}{3}\sqrt{2g}bH^{3$	- w)	
$\ell = 2(H-h)\tan\left(\frac{\theta}{2}\right) \frac{V_1^2}{2g} \ll H \Rightarrow Q = \frac{8}{15}\tan\left(\frac{\theta}{2}\right)\sqrt{2g}H^{5/2}$ $Q = C_{wt}\frac{8}{15}\tan\left(\frac{\theta}{2}\right)\sqrt{2g}H^{5/2}$		
10.6.3 Broad-Crested Weirs	[four operations]	[velocity]
$H + P_w + \frac{V_1^2}{2g} = y_c + p_w + \frac{V_c^2}{2g} H - y_c = \frac{\left(V_c^2 - V_1^2\right)}{2g} = \frac{V_c^2}{2g}$	[exponent] [square root]	[gravity]
$ \begin{array}{c} V_2 = V_c = (gy_c)^{1/2} \\ V_c^2 = gy_c \end{array} \end{array} \rightarrow H - y_c = \frac{y_c}{2} \rightarrow y_c = \frac{2H}{3} $ $ \begin{array}{c} 10.6.3 \text{ Broad-Crested Weirs (Continued)} \end{array} $		
$Q = by_2V_2 = by_eV_e = by_e(gy_e)^{1/2} = b\sqrt{g}y_e^{3/2} \rightarrow$		
$Q = b_{\sqrt{g}} \left(\frac{2}{3}\right)^{3/2} H^{3/2} Q = C_{wb} b_{\sqrt{g}} \left(\frac{2}{3}\right)^{3/2} H^{3/2}$		
$C_{wb} = \frac{0.65}{\left(1 + H/P_w\right)^{1/2}}$		
10.6.4 Underflow Gates $q = C_d a \sqrt{2gy_1}$		
10.7 Chapter Summary and Study Guide N/A	N/A	N/A
Chapter 11 Compressible Flow		
11.3 Categories of Compressible Flow	[four operations]	[velocity]
$r = (t - t_{wave})c \sin \alpha = \frac{c}{V} = \frac{1}{Ma}$ 11.4.2 Converging-Diverging Duct Flow	[trigonometric functions]	[speed of sound]
11.4.2 Converging-Diverging Duct Flow	[four operations]	[pressure] \rightarrow To be taught
$\frac{p}{p^k} = \text{constant} = \frac{p_0}{p_0^k} \frac{dp}{\rho} + d\left(\frac{V^2}{2}\right) = 0$	[exponent] [square root]	[density] [velocity] {Ideal Gas Law} → Post-
$\frac{p_0^{1/k}}{\rho_0} \frac{dp}{(p)^{1/k}} + d\left(\frac{V^2}{2}\right) = 0$		secondary $ ightarrow$ to be taught

Table 2. (C	Continued).
-------------	-------------

Engineering Analytic Topics & Formulas		requisite Topics & Skills
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 11 Compressible Flow (Continued 11.4.2 Converging-Diverging Duct Flown	<u>)</u> ↑	<u>↑</u>
(Continued)	.T.	
$\frac{k}{k-1}\left(\frac{p_0}{\rho_0} - \frac{p}{\rho}\right) - \frac{V^2}{2} = 0 \frac{kR}{k-1}(T_0 - T) - \frac{V^2}{2} = 0$	Refer to the previous page.	Refer to the previous page.
$ \begin{pmatrix} (T_0 - T) - \frac{V^2}{2} = 0 \\ {h_2 - h_1} = c_p (T_2 - T_1) \end{pmatrix} \rightarrow \check{h}_0 - \left(\check{h} + \frac{V^2}{2} \right) = 0 $		
11.4.2 Converging-Diverging Duct Flow (Continued) $\frac{T}{T_0} = \frac{1}{1 + [(k-1)/2]Ma^2} \left(\frac{p}{p_0}\right) \left(\frac{\rho_0}{\rho}\right) = \frac{T}{T_0} \left(\frac{p}{p_0}\right) = \left(\frac{T}{T_0}\right)^{k/(k-1)}$	[four operations] [exponent] [square root]	[pressure] → To be taught [density] [velocity] {Ideal Gas Law} → Post-
$ \begin{vmatrix} \frac{T}{T_0} = \frac{1}{1 + [(k-1)/2]Ma^2} \\ \left(\frac{p}{p_0}\right) = \left(\frac{T}{T_0}\right)^{k/(k-1)} \end{vmatrix} \rightarrow \frac{p}{p_0} = \left\{\frac{1}{1 + [(k-1)/2]Ma^2}\right\}^{k/(k-1)} $		secondary → to be taught
$\begin{vmatrix} \frac{T}{T_0} = \frac{1}{1 + [(k-1)/2]Ma^2} \\ \left(\frac{p}{p_0}\right) \left(\frac{\rho_0}{\rho}\right) = \frac{T}{T_0} \end{vmatrix} \rightarrow$		
$\frac{p}{p_0} = \left\{\frac{1}{1 + [(k-1)/2]Ma^2}\right\}^{k/(k-1)}$		
$\frac{\rho_0}{\rho} = \left\{ \frac{1}{1 + [(k-1)/2]Ma^2} \right\}^{k/(k-1)}$ $n^* (2)^{k/(k-1)} (n^*)$		
$\frac{p^*}{p_0} = \left(\frac{2}{k+1}\right)^{k/(k-1)} \left(\frac{p^*}{p_0}\right)_{k=1,4} = 0.528 p^*_{k=1,4} = 0.528 p_{aim}$ $T^* = 2 (T^*) = 0.022 T^* = 0.0227$		
$\frac{T^*}{T_0} = \frac{2}{k+1} \left(\frac{T^*}{T_0}\right)_{k=1,4} = 0.833 T^*_{k=1,4} = 0.833T_{atm}$		<u> </u>
11.4.2 Converging-Diverging Duct Flow (Continued) Ma = 1	[four operations] [exponent]	[pressure] → To be taught [density]
$p = \rho RT$	[square root]	[velocity]
$ \frac{p^*}{p_0} = \left(\frac{2}{k+1}\right)^{k/(k-1)} \qquad \longrightarrow \qquad $		{Ideal Gas Law} → Post- secondary → to be taught
$\frac{\rho^*}{\rho_0} = \left(\frac{\rho^*}{T^*}\right) \left(\frac{T_0}{p_0}\right) = \left(\frac{2}{k+1}\right)^{k/(k-1)} \left(\frac{k+1}{2}\right) = \left(\frac{2}{k+1}\right)^{k/(k-1)}$		
$\left(\frac{\rho^*}{\rho_0}\right)_{k=1,4} = 0.634$ $A = \left(\rho^*\right)(V^*) V^* = \sqrt{RT^*k}$		
$\rho AV = \rho * A * V * \frac{A}{A^*} = \left(\frac{\rho *}{\rho}\right) \left(\frac{V *}{V}\right) V^* = \sqrt{RT * k}$ $V = Ma\sqrt{RTk}$		
$\frac{A}{A^*} = \frac{1}{Ma} \left(\frac{\rho^*}{\rho_0}\right) \left(\frac{\rho_0}{\rho}\right) \sqrt{\frac{(T^*/T_0)}{T/T_0}}$		

Table 2. (Continued).

Engineering Analytic Topics & Formulas	Math & Science Pre-	requisite Topics & Skills
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 11 Compressible Flow (Continued		
11.4.2 Converging-Diverging Duct Flow (Continued) $ \frac{T}{T_{0}} = \frac{1}{1 + [(k-1)/2]Ma^{2}} $ $ \frac{P}{P_{0}} = \left\{\frac{1}{1 + [(k-1)/2]Ma^{2}}\right\}^{k/(k-1)} $ $ \frac{T^{*}}{T_{0}} = \frac{2}{k+1} $ $ \frac{\rho^{*}}{\rho_{0}} = \left(\frac{\rho^{*}}{T^{*}}\right)\left(\frac{T_{0}}{P_{0}}\right) = \left(\frac{2}{k+1}\right)^{k/(k-1)}\left(\frac{k+1}{2}\right) = \left(\frac{2}{k+1}\right)^{k/(k-1)} $ $ \frac{A}{A^{*}} = \frac{1}{Ma}\left(\frac{\rho^{*}}{\rho_{0}}\right)\left(\frac{\rho_{0}}{\rho}\right)\sqrt{\frac{(T^{*}/T_{0})}{T/T_{0}}} $ $ \frac{A}{A^{*}} = \frac{1}{Ma}\left\{\frac{1 + [(k-1)/2]Ma^{2}}{1 + [(k-1)/2]}\right\}^{(k+1)/[2(k-1)]} $	[four operations] [exponent] [square root]	[pressure] → To be taught [density] [velocity] {Ideal Gas Law} → Post- secondary → to be taught
11.4.3 Constant Area Duct Flow N/A	N/A	[density] [velocity] [pressure] [friction] → To be taught [acceleration]
11.5.3 Normal Shock Waves $\rho V = \text{constant} p + \rho V^2 = \text{constant}$ $p + \frac{(\rho V)^2 RT}{p} = \text{constant}$ $\frac{h}{h} + \frac{V^2}{2} = \stackrel{\circ}{h_0} = \text{constant} \stackrel{\circ}{h-h_0} = c_p (T - T_0) p = \rho RT$ $T + \frac{(\rho V)^2 T^2}{2c_p (p^2/R^2)} = T_0 = \text{constant}$ $\frac{p_y}{p_x} = \left(\frac{p_y}{p_a}\right) \left(\frac{p_a}{p_x}\right) \frac{p_y}{p_a} = \frac{1+k}{1+kMa_y^2} \frac{p_x}{p_a} = \frac{1+k}{1+kMa_x^2}$ $\frac{p_y}{p_x} = \frac{1+kMa_x^2}{1+kMa_y^2} \frac{p_y}{p_x} = \left(\frac{p_y}{p^*}\right) \left(\frac{p^*}{p_x}\right)$ $\frac{p}{p^*} = \frac{1}{Ma} \left\{\frac{(k+1)/2}{(1+[(K-1)/2]Ma^2}\right\}^{1/2}$ $p_x + \rho_x V_x^2 = p_y + \rho_y V_y^2 \frac{\rho V^2}{p} = \frac{V^2}{RT} = \frac{kV^2}{RTk} = kMa^2$ $\frac{T_y}{T_x} = \left(\frac{T_y}{T^*}\right) \left(\frac{T^*}{T_x}\right) \frac{T_x}{T^*} = \frac{(k+1)/2}{1+[(k-1)/2]Ma_x^2}$	[four operations] [exponent]	{Ideal Gas Law} → Post- secondary → to be taught [temperature] [density] [pressure] → To be taught [speed] [velocity] [graph]

Table 2. (Continued).

Engineering Analytic Topics & Formulas	Math & Science Pre-	requisite Topics & Skills
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 11 Compressible Flow (Continued))	
11.5.3 Normal Shock Waves (Continued)	\wedge	<u>↑</u>
$\frac{T_{y}}{T_{x}} = \frac{1 + [(k-1)/2] Ma_{x}^{2}}{1 + [(k-1)/2] Ma_{y}^{2}} \frac{p_{y}}{p_{x}} = \left(\frac{T_{y}}{T_{x}}\right) \left(\frac{\rho_{y}}{\rho_{x}}\right) \rho_{x} V_{x} = \rho_{y}$	Vy Refer to the previous page.	Refer to the previous page.
$\frac{p_y}{p_x} = \left(\frac{T_y}{T_x}\right) \left(\frac{V_x}{V_y}\right) \frac{p_y}{p_x} = \left(\frac{T_y}{T_x}\right)^{1/2} \left(\frac{Ma_x}{Ma_y}\right)$		
$\frac{p_y}{p_x} = \left\{ \frac{1 + [(k-1)/2] M a_x^2}{1 + [(k-1)/2] M a_y^2} \right\}^{1/2} \frac{M a_x}{M a_y}$		
$Ma_{y}^{2} = \frac{Ma_{x}^{2} + [2/(k-1)]}{[2k/(k-1)]Ma_{x}^{2} - 1} \frac{P_{y}}{P_{x}} = \frac{2k}{k+1}Ma_{x}^{2} - \frac{k-1}{k+1}$		
$\frac{T_y}{T_x} = \frac{\{1 + [(k-1)/2]\mathbf{M}a_x^2\}\{2k/(k-1)\}\mathbf{M}a_x^2 - 1}{\{(k+1)^2/2(k-1)\}\mathbf{M}a_x^2}$		
$\frac{\rho_y}{\rho_x} = \frac{V_x}{V_y} \frac{\rho_y}{\rho_x} = \left(\frac{p_y}{p_x}\right) \left(\frac{T_x}{T_y}\right) \frac{\rho_y}{\rho_x} = \frac{V_x}{V_y} = \frac{(k+1)Ma_x^2}{(k-1)Ma_x^2 + 2}$		
$\frac{p_{0,y}}{p_{0,x}} = \left(\frac{p_{0,y}}{p_y}\right) \left(\frac{p_y}{p_x}\right) \left(\frac{p_x}{p_{0,x}}\right)$		
$\frac{P_{0,y}}{P_{0,x}} = \frac{\left(\frac{k+1}{2}\mathbf{M}a_x^2\right)^{k/(k-1)} \left(1 + \frac{k-1}{2}\mathbf{M}a_x^2\right)^{k/(1-k)}}{\left(\frac{2k}{k+1}\mathbf{M}a_x^2 - \frac{k-1}{k+1}\right)^{1/(k-1)}}$		
11.6 Analogy between Compressible and Open-Channel	[four operations]	[density]
Flows $Ma = \frac{V}{c}$ $Fr = \frac{V_{oc}}{\sqrt{gy}}$ $c_{oc} = \sqrt{gy}$ $Fr = \frac{V_{oc}}{c_{oc}}$ $\rho AV = \text{constant}$ $ybV_{oc} = \text{constant}$ $c = \sqrt{(\text{constant})k\rho^{k-1}}$	[square root] [areas of geometric shapes]	[velocity] [gravity] [mass]
11.7 Two-Dimensional Compressible Flow $V_{t1} = V_{t2}$	[four operations] [triangle]	[velocity]
11.8 Chapter Summary and Study Guide N/A	N/A	N/A
Chapter 12 Turbomachines		
12.1 Introduction N/A	N/A	[force] [work] [energy]
		[power]
12.2 Basic Energy Considerations $\vec{V} = \vec{W} + \vec{U}$ $U = \omega r$	[four operations] [radius]	[velocity]

Engineering Analytic Topics & Formulas		requisite Topics & Skills
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 12 Turbomachines (Continued) 12.3 Basic Angular Momentum Considerations	[sigma notation]	[donsity]
12.5 Basic Angular Momentum Considerations	[sigma notation] [integration] → Post- Secondary [special math: cross	[density] [torque] → Post-secondary → To be taught [momentum]
$\sum \left(\vec{r} \times \vec{F} \right) = \int_{cs} \left(\vec{r} \times \vec{V} \right) \rho \vec{V} \cdot \hat{n} dA$	product] ➔ To be taught as a	
$T_{shaft} = -\dot{m}_1 (r_1 V_{\theta 1}) + -\dot{m}_2 (r_1 V_{\theta 2})$	special math topic [analytic geometry] \rightarrow 12 th	
$m = \rho Q \dot{W}_{shaft} = T_{shaft} \omega \dot{W}_{shaft} = -\dot{m}_1 (U_1 V_{\theta 1}) + -\dot{m}_2 (U_1 V_{\theta 2})$	(To be taught as a special	
$w_{shaft} = \frac{W_{shaft}}{\dot{m}} w_{shaft} = -U_1 V_{\theta 1} + U_1 V_{\theta 2} V^2 = V_{\theta}^2 + V_x^2$	math topic) or Post- Secondary [areas of geometric	
$V_x^2 + (V_\theta - U)^2 = W^2$ $V_\theta U = \frac{V^2 + U^2 - W^2}{2}$	shapes]	
$w_{shaft} = \frac{V_2^2 - V_1^2 + U_2^2 - U_1^2 - (W_2^2 - W_1^2)}{2}$		
12.4 The Centrifugal Pump	[four operations]	[velocity]
N/A 12.4.1 Theoretical Considerations	[triangle] [trigonometric functions]	[density] [gravity]
	[areas of geometric	[gravity]
$ \vec{V}_1 = \vec{W}_1 + \vec{U}_1 U_1 = r_1 \omega \vec{V}_2 = \vec{W}_2 + \vec{U}_2 U_2 = r_2 \omega $ $ \vec{m}_1 = \vec{m}_2 = \vec{m} $	shapes]	
$T_{shaft} = \dot{m} \left(r_2 V_{\theta 2} - r_1 V_{\theta 1} \right) T_{shaft} = \rho Q \left(r_2 V_{\theta 2} - r_1 V_{\theta 1} \right)$		
$\dot{W}_{shaft} = T_{shaft}\omega \dot{W}_{shaft} = \rho Q \omega (r_2 V_{\theta 2} - r_1 V_{\theta 1})$		
$\dot{W}_{shaft} = \rho Q (U_2 V_{\theta 2} - U_1 V_{\theta 1}) w_{shaft} = \frac{\dot{W}_{shaft}}{\rho Q} = U_2 V_{\theta 2} - U_1 V_{\theta 1}$		
$\dot{W}_{shaft} = \rho g Q h_i h_i = \frac{1}{g} \left(U_2 V_{\theta 2} - U_1 V_{\theta 1} \right)$		
12.4.1 Theoretical Considerations (Continued)	[four operations]	
$h_{i} = \frac{1}{2g} \left[\left(V_{2}^{2} - V_{1}^{2} \right) + \left(U_{2}^{2} - U_{1}^{2} \right) + \left(W_{2}^{2} - W_{1}^{2} \right) \right] h_{i} = \frac{U_{2} V_{\theta 2}}{g}$	[triangle] [trigonometric functions] [areas of geometric	
$\cot \beta_2 = \frac{U_2 - V_{\theta 2}}{V_{r2}} h_i = \frac{U_2^2}{g} - \frac{U_2 V_{r2} \cot \beta_2}{g} Q = 2\pi r_2 b_2 V_{r2}$	shapes]	
$h_i = \frac{U_2^2}{g} - \frac{U_2 \cot \beta_2}{2\pi r_2 b_2 g} Q$ 12.4.2 Pump Performance Characteristics		
12.4.2 Pump Performance Characteristics	[four operations]	[pressure] \rightarrow To be taught
$h_a = \frac{p_2 - p_1}{\gamma} + z_2 - z_1 + \frac{V_2^2 - V_1^2}{2g}$	[areas of geometric shapes] [unit conversion]	[velocity] [gravity]
$h_a = h_p = h_s - h_L h_a \approx \frac{p_2 - p_1}{\gamma} \wp_f = \gamma Q h_a$		
$\wp_f = \text{water horsepower} = \frac{\gamma Q h_a}{550}$		
$\eta = \frac{\text{power gained by the v fluid}}{\text{shaft power driving the pump}} = \frac{\mathscr{P}_f}{\dot{W}_{shaft}}$		
$\eta = \frac{\gamma Q h_a / 550}{b h p} \eta = \eta_h \eta_m \eta_v$		

Table 2. (Co	ontinued).
--------------	------------

Engineering Analytic Topics & Formulas	Math & Science Pre-	requisite Topics & Skills
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}
Chapter 12 Turbomachines (Continued)		
12.4.3 Net Positive Suction Head (NPSH) $NPSH = \frac{p_s}{\gamma} + \frac{V_s^2}{2g} - \frac{p_v}{\gamma} \frac{p_{atm}}{\gamma} - z_1 = \frac{p_s}{\gamma} + \frac{V_s^2}{2g} = \sum h_L \rightarrow$ $\frac{p_s}{\gamma} + \frac{V_s^2}{2g} = \frac{p_{atm}}{\gamma} - z_1 - \sum h_L \rightarrow$	[four operations] [sigma notation]	[pressure] → To be taught [velocity] [gravity] [density]
$\gamma 2g \gamma$ $NPSH = \frac{p_{aim}}{\gamma} - z_1 - \sum h_L - \frac{p_v}{\gamma}$		
12.4 4 System Characteristics and Pump Selection $h_p = z_2 - z_1 + \sum h_L$ $h_p = z_2 - z_1 + KQ^2$		[velocity] [density]
12.5 Dimensionless Parameters and Similarity Laws dependent variable = f(D, ℓ_i , ε , Q, ω , μ , ρ) dependent piterm = $\phi \left(\frac{\ell_i}{D}, \frac{\varepsilon}{D}, \frac{Q}{\omega D^3}, \frac{\rho \omega D^2}{\mu} \right)$	[four operations] [ratio]	[gravity] [density] [energy] [velocity]
$C_{H} = \frac{gh_{a}}{\omega^{2}D^{2}} = \phi_{1}\left(\frac{\ell_{i}}{D}, \frac{\varepsilon}{D}, \frac{Q}{\omega D^{3}}, \frac{\rho\omega D^{2}}{\mu}\right)$		
$C_{\wp} = \frac{\dot{W}_{shaft}}{\rho \omega^3 D^5} = \phi_2 \left(\frac{\ell_i}{D}, \frac{\varepsilon}{D}, \frac{Q}{\omega D^3}, \frac{\rho \omega D^2}{\mu} \right)$		
$\eta = \frac{\rho g Q h_a}{\dot{W}_{shaft}} = \phi_3 \left(\frac{\ell_i}{D}, \frac{\varepsilon}{D}, \frac{Q}{\omega D^3}, \frac{\rho \omega D^2}{\mu} \right)$		
$\frac{gh_a}{\omega^2 D^2} = \phi_1 \left(\frac{Q}{\omega D^3}\right) \frac{\dot{W}_{shaft}}{\rho \omega^3 D^5} = \phi_2 \left(\frac{Q}{\omega D^3}\right) \eta = \phi_3 \left(\frac{Q}{\omega D^3}\right)$		
$\left(\frac{Q}{\omega D^3}\right)_1 = \left(\frac{Q}{\omega D^3}\right)_2 \left(\frac{gh_a}{\omega^2 D^2}\right)_1 = \left(\frac{gh_a}{\omega^2 D^2}\right)_2$		
$\left(\frac{\dot{W}_{shaft}}{\rho\omega^3 D^5}\right)_1 = \left(\frac{\dot{W}_{shaft}}{\rho\omega^3 D^5}\right)_2 \eta = \eta_2$		
12.5.1 Special Pump Scaling Laws	[four operations]	[velocity]
$\frac{\underline{Q}_{1}}{Q_{2}} = \frac{\underline{\omega}_{1}}{\underline{\omega}_{2}} \frac{h_{a1}}{h_{a2}} = \frac{\underline{\omega}_{1}^{2}}{\underline{\omega}_{2}^{2}} \frac{W_{shaffl}}{W_{shaff2}} = \frac{\underline{\omega}_{1}^{3}}{\underline{\omega}_{2}^{3}} \frac{\underline{Q}_{1}}{Q_{2}} = \frac{\underline{D}_{1}^{3}}{\underline{D}_{2}^{3}} \frac{h_{a1}}{h_{a2}} = \frac{\underline{D}_{1}^{2}}{\underline{D}_{2}^{2}}$ $\frac{W_{shaffl}}{W_{shaffl}} = \frac{\underline{D}_{1}^{5}}{\underline{D}_{2}^{5}} \frac{1 - \eta_{2}}{1 - \eta_{1}} \approx \left(\frac{\underline{D}_{1}}{\underline{D}_{2}}\right)^{1/5}$	[areas of geometric shapes: circle, triangle] [exponent] [ratio]	[power] [energy]
12.5.2 Specific Speed	[four operations]	[speed]
$\frac{\left(Q/\omega D^{3}\right)^{1/2}}{\left(gh_{a}/\omega^{2}D^{2}\right)^{3/4}} = \frac{\omega\sqrt{Q}}{\left(gh_{a}\right)^{3/4}} = N_{s} N_{sd} = \frac{\omega(rpm)\sqrt{Q(gpm)}}{\left[h_{a}(ft)\right]^{3/4}}$	[ratio]	
12.5.3 Suction Specific Speed		
$S_{s} = \frac{\omega \sqrt{Q}}{\left[g(NPSH_{R})\right]^{3/4}} S_{sd} = \frac{\omega(rpm)\sqrt{Q(gpm)}}{\left[NPSH_{R}(ft)\right]^{3/4}}$		
12.6 Axial-Flow and Mixed-Flow Pump	[graph]	
N/A 12.7 Fans	[four operations]	[speed]
$\left(\frac{p_a}{\rho\omega^2 D^2}\right)_1 = \left(\frac{p_a}{\rho\omega^2 D^2}\right)_2$	[areas of geometric shapes: circle, triangle] [ratio]	[pressure] → To be taught [density]

Table 2. (Continued).

Engineering Analytic Topics & Formulas	Math & Science Pre-requisite Topics & Skills		
Subject: Fluid Mechanics	[Math]	[Physics]/{Chemistry}	
Chapter 12 Turbomachines (Continued)			
12.8.2 Reaction Turbines $C_{Q} = \frac{Q}{\omega D^{3}} C_{H} = \frac{gh_{T}}{\omega^{2} D^{2}} C_{\wp} = \frac{\dot{W}_{shaft}}{\rho \omega^{3} D^{5}} \eta = \frac{\dot{W}_{shaft}}{\rho g Q h_{T}}$ $C_{H} = \phi_{1}(C_{Q}) C_{\wp} = \phi_{2}(C_{Q}) \eta = \phi_{3}(C_{Q}) \eta = \frac{C_{\wp}}{C_{H}C_{Q}}$ $N'_{s} = \frac{\omega \sqrt{\dot{W}_{shaft}/\rho}}{(gh_{T})^{5/4}} N'_{sd} = \frac{\omega(rpm)\sqrt{\dot{W}_{shaft}(bhp)}}{[h_{T}(ft)]^{5/4}}$	[four operations] [square root] [exponent]	[power] [speed] [force] [density] [gravity]	
12.9 Compressible Flow Turbomachines	[four operations]	[mass]	
12.9.1 Compressors $\left(\frac{R\dot{m}\sqrt{kRT_{01}}}{D^2 p_{01}}\right)_{test} = \left(\frac{R\dot{m}\sqrt{kRT_{01}}}{D^2 p_{01}}\right)_{std}$ $\dot{m}_{std} = \frac{\dot{m}_{std}\sqrt{T_{01 test}}/T_{0 std}}{\dot{p}_{01 test}/p_{0 std}}$ $\frac{ND}{\sqrt{kRT_{01}}} \qquad N_{std} = \frac{N}{\sqrt{T_{01}/T_{std}}}$	[square root] [graph]	[pressure] [friction] → To be taught [velocity] [temperature]	
12.9.2 Compressible Flow Turbines N/A	N/A	[mass] [pressure] → To be taught [friction] → To be taught [velocity] [temperature]	
12.10 Chapter Summary and Study Guide N/A	N/A	N/A	
THE END			

Table 3. Pre-Requisite Mathematics and Science Topics to Be Reviewed Before Teaching the Pre-Calculus Portions of Fluid Mechanics Topics to 9th Grade Students

Table 4. Pre-Calculus Based Fluid Mechanics Topics That Possibly Could Be Taught at 9th Grade (Chapters and sections)

Chapter/Section	Page Numbers	Number of
		Pages
Chapter 1 – Introduction (pp. 1-30 \rightarrow 30 pages sub-total. 10		
1.1 Some Characteristics of Fluid	1-13	13
1.2 Dimensions, Dimensional Homogeneity, and Units		
1.3 Analysis of Fluid Mechanics Behavior		
1.4 Measures of Fluid Mechanics Mass and Weight		
1.4.1 Density		
1.4 2 Specific Weight		
1.4.3 Specific Gravity		
1.5 Ideal Gas Law		
1.7 Compressibility of Fluids	20-30	11
1.7.1 Bulk Modulus		
1.7.2 Compression and Expansion of Gases		
1.7.3 Speed of Sound		
1.8 Vapor Pressure		
1.9 Surface Tension		
1.10 A Brief Look Back in History		
1.11 Chapter Summary and Study Guide		
Chapter 2 Fluid Statics (pp. 38-79 \rightarrow 42 pages sub-total. 9 set	ections out of 1	3)
2.3 Pressure Variation in a Fluid at Rest (Concept only)*		
2.3.1 Incompressible Fluid	42-56	15
2.3.2 Compressible Fluid		
2.4 Standard Atmosphere		
2.5 Measurement of Pressure		
2.6 Monometry		
2.6.1 Piezometer Tube		
2.6.2 U-Tube Manometer		
2.6.3 Inclined-Tube Manometer		
2.7 Mechanical and Electronic Pressure Measuring Devices		
2.9 Pressure Prism	63-72	10
2.10 Hydrostatic Force on a Curves Surface		
2.11 Buoyancy, Flotation, and Stability		
2.11.1 Archimedes' Principle		
2.11.2 Stability		
2.13 Chapter Summary and Study Guide	78-79	2
Chapter 3 Elementary Fluid Dynamics – The Bernoulli Eq	uation	
(pp. 95-135 \rightarrow 41 pages sub-total. 8 sections out of 9)		
3.1 Newton's Second Law	95-101	7
3.2 F = ma along a Streamline	75-101	/
3.4 Physical Interpretation	104-135	32
3.5 Static, Stagnation, Dynamic, and Total Pressure	104-155	52
3.6 Examples of Use of the Bernoulli Equation		
3.6.1 Free Jets		
3.6.2 Confined Flows		
3.6.3 Flowrate Measurement		
3.7 The Energy Line and the Hydraulic Grade Line		
3.8 Restrictions on Use of the Bernoulli Equation		
3.8.1 Compressibility Effects		
3.8.3 Rotational Effects		

* Basic principles covered under this section heading could be explored; but the formulas used are calculus-based.

List 1A. (Continued)

Chapter/Section	Page	Number of
Chapter/Section	Numbers	
		Pages
Chapter 3 Elementary Fluid Dynamics – The Bernoulli Eq		
3.8.4 Other Restrictions	\uparrow	1
3.9 Chapter Summary and Study Guide		
Chapter 4 Fluid Kinematics (pp. 150-184 \rightarrow 35 pages sub-to	tal. 3 sections	out of 5)
4.3 Control Volume and System Representations	168-169	2
4.4 The Reynolds Transport Theorem	170-171	2
4.4.7 Selection of a Control Volume	182-182	3
4.5 Chapter Summary and study Guide		
Chapter 5 Finite Control Volume Analysis (pp. 192-252 →	61 pages sub-to	otal 2 sections
out of 5)		
5.1 Conservation of Mass – The Continuity Equation (Concept only)*		
5.1.2 Fixed, Non-deforming Control Volume	195-200	6
5.3.3 Comparison of the Energy Equation with the Bernoulli Equation	236-246	11
5.3.4 Application of the Energy Equation to Non-uniform Flow		
5.3.5 Combination of the Energy Equation and the Moment-of-momentum		
Equation		
5.4.4 Application of the Loss Form of the Energy Equation	249-252	4
5.5 Chapter Summary and Study Guide		
Chapter 6 Differential Analysis of Fluid Flow (pp. 272-334	\rightarrow 63 pages su	ıb-total. 0
sections out of 11)		
Chapter 7 Similitude, Dimensional Analysis, and Modeling	T	
(pp. 346-391 \rightarrow 46 pages sub-total. 0 sections out of 11)		
	1 1	
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s	ub-total. 5 sect	ions out of 7)
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)*		
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations	416-417	2
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow		
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses	416-417	2
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses	416-417	2
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses 8.4.3 Noncircular Conduits	416-417	2
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses 8.4.3 Noncircular Conduits 8.5 Pipe Flow Examples	416-417	2
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses 8.4.3 Noncircular Conduits 8.5 Pipe Flow Examples 8.5.1 Single Pipes	416-417	2
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses 8.4.3 Noncircular Conduits 8.5 Pipe Flow Examples 8.5.1 Single Pipes 8.5.2 Multiple Pipe Systems	416-417	2
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses 8.4.3 Noncircular Conduits 8.5 Pipe Flow Examples 8.5.1 Single Pipes 8.5.2 Multiple Pipe Systems 8.6 Pipe Flowrate Measurement	416-417	2
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses 8.4.3 Noncircular Conduits 8.5 Pipe Flow Examples 8.5.1 Single Pipes 8.5.2 Multiple Pipe Systems	416-417	2
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses 8.4.3 Noncircular Conduits 8.5 Pipe Flow Examples 8.5.1 Single Pipes 8.5.2 Multiple Pipe Systems 8.6 Pipe Flowrate Measurement 8.6.1 Pipe Flowrate Meters	416-417	2
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses 8.4.3 Noncircular Conduits 8.5 Pipe Flow Examples 8.5.1 Single Pipes 8.6.2 Multiple Pipe Systems 8.6.1 Pipe Flowrate Measurement 8.6.2 Volume Flow Meters 8.7 Chapter Summary and Study Guide	416-417 430-472	2 43
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses 8.4.3 Noncircular Conduits 8.5 Pipe Flow Examples 8.5.1 Single Pipes 8.6.2 Volume Flow Meters 8.6.2 Volume Flow Meters 8.7 Chapter 9 Flow over Immersed Bodies (pp. 483-550 → 68 pt.)	416-417 430-472	2 43
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses 8.4.3 Noncircular Conduits 8.5 Pipe Flow Examples 8.5.1 Single Pipes 8.5.2 Multiple Pipe Systems 8.6 Pipe Flowrate Measurement 8.6.1 Pipe Flowrate Meters 8.6.2 Volume Flow Meters 8.7 Chapter 9 Flow over Immersed Bodies (pp. 483-550 → 68 pout of 5)	416-417 430-472 bages sub-total.	2 43 43
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses 8.4.3 Noncircular Conduits 8.5 Pipe Flow Examples 8.5.1 Single Pipes 8.5.2 Multiple Pipe Systems 8.6 Pipe Flowrate Measurement 8.6.1 Pipe Flow Meters 8.7 Chapter 9 Flow over Immersed Bodies (pp. 483-550 → 68 pout of 5) 9.1 General External Flow Characteristics	416-417 430-472	2 43
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses 8.4.3 Noncircular Conduits 8.5 Pipe Flow Examples 8.5.1 Single Pipes 8.5.2 Multiple Pipe Systems 8.6 Pipe Flowrate Measurement 8.6.1 Pipe Flow Meters 8.7 Chapter 9 Flow over Immersed Bodies (pp. 483-550 → 68 pout of 5) 9.1 General External Flow Characteristics 9.1.1 Lift and Drag Concepts	416-417 430-472 bages sub-total.	2 43 43
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses 8.4.3 Noncircular Conduits 8.5 Pipe Flow Examples 8.5.1 Single Pipes 8.5.2 Multiple Pipe Systems 8.6 Pipe Flowrate Measurement 8.6.1 Pipe Flow Meters 8.7 Chapter 9 Flow over Immersed Bodies (pp. 483-550 → 68 pout of 5) 9.1 General External Flow Characteristics 9.1.1 Lift and Drag Concepts 9.1.2 Characteristics of Flow Past an Object	416-417 430-472 pages sub-total. 484-493	2 43 43
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses 8.4.3 Noncircular Conduits 8.5 Pipe Flow Examples 8.5.1 Single Pipes 8.5.2 Multiple Pipe Systems 8.6 Pipe Flowrate Measurement 8.6.1 Pipe Flowrate Meters 8.6.2 Volume Flow Meters 8.7 Chapter 9 Flow over Immersed Bodies (pp. 483-550 → 68 p out of 5) 9.1 General External Flow Characteristics 9.1.1 Lift and Drag Concepts 9.1.2 Characteristics of Flow Past an Object 9.3 Drag	416-417 430-472 bages sub-total.	2 43 43 4 4 8 4 8 6 6 10
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses 8.4.3 Noncircular Conduits 8.5 Pipe Flow Examples 8.5.1 Single Pipes 8.5.2 Multiple Pipe Systems 8.6 Pipe Flowrate Measurement 8.6.1 Pipe Flow Meters 8.7 Chapter 9 Flow over Immersed Bodies (pp. 483-550 → 68 pout of 5) 9.1 General External Flow Characteristics 9.1.1 Lift and Drag Concepts 9.1.2 Characteristics of Flow Past an Object 9.3 Drag 9.3.1 Friction Drag	416-417 430-472 pages sub-total. 484-493	2 43 43 4 4 8 4 8 6 6 10
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses 8.4.3 Noncircular Conduits 8.5 Pipe Flow Examples 8.5.1 Single Pipes 8.5.2 Multiple Pipe Systems 8.6 Pipe Flowrate Measurement 8.6.1 Pipe Flowrate Meters 8.6.2 Volume Flow Meters 8.7 Chapter 9 Flow over Immersed Bodies (pp. 483-550 → 68 p out of 5) 9.1 General External Flow Characteristics 9.1.1 Lift and Drag Concepts 9.1.2 Characteristics of Flow Past an Object 9.3 Drag	416-417 430-472 pages sub-total. 484-493	2 43 43 4 4 8 4 8 6 6 10
 Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses 8.4.2 Minor Losses 8.4.3 Noncircular Conduits 8.5 Pipe Flow Examples 8.5.1 Single Pipes 8.5.2 Multiple Pipe Systems 8.6 Pipe Flowrate Measurement 8.6.1 Pipe Flowrate Meters 8.6.2 Volume Flow Meters 8.7 Chapter 9 Flow over Immersed Bodies (pp. 483-550 → 68 pout of 5) 9.1 General External Flow Characteristics 9.1.1 Lift and Drag Concepts 9.1.2 Characteristics of Flow Past an Object 9.3 Drag 9.3.1 Friction Drag 9.3.2 Pressure Drag 	416-417 430-472 pages sub-total. 484-493	2 43 43 4 4 8 4 8 6 6 10
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses 8.4.2 Minor Losses 8.4.3 Noncircular Conduits 8.5 Pipe Flow Examples 8.5.1 Single Pipes 8.5.2 Multiple Pipe Systems 8.6 Pipe Flowrate Measurement 8.6.1 Pipe Flow Meters 8.6.2 Volume Flow Meters 8.7 Chapter 9 Flow over Immersed Bodies (pp. 483-550 → 68 p out of 5) 9.1 General External Flow Characteristics 9.1.1 Lift and Drag Concepts 9.1.2 Characteristics of Flow Past an Object 9.3 Drag 9.3.1 Friction Drag 9.3.2 Pressure Drag 9.3.3 Drag Coefficient Data and Examples	416-417 430-472 pages sub-total. 484-493	2 43 43 4 4 8 4 8 6 6 10
Chapter 8 Viscous Flow in Pipes (pp. 401-472 → 72 pages s 8.2 Fully Developed Laminar Flow (Concept only)* 8.2.4 Energy Considerations 8.4 Dimensional Analysis of Pipe Flow 8.4.1 Major Losses 8.4.2 Minor Losses 8.4.3 Noncircular Conduits 8.5 Pipe Flow Examples 8.5.1 Single Pipes 8.5.2 Multiple Pipe Systems 8.6 Pipe Flowrate Measurement 8.6.1 Pipe Flow Meters 8.6.2 Volume Flow Meters 8.7 Chapter 9 Flow over Immersed Bodies (pp. 483-550 → 68 p out of 5) 9.1 General External Flow Characteristics 9.1.1 Lift and Drag Concepts 9.1.2 Characteristics of Flow Past an Object 9.3 Drag 9.3.1 Friction Drag 9.3.2 Pressure Drag 9.3.3 Drag Coefficient Data and Examples	416-417 430-472 pages sub-total. 484-493	2 43 43 4 4 8 4 8 6 6 10

List 1A. (Continued)

Chapter/Section	Page	Number of
· · · · · · · · · · · · · · · · · · ·	Numbers	Pages
Chapter 10 Open Channel Flow (Whole Chapter; pp. 561-	$605 \rightarrow 45$ mages	0
sections out of 7)	ooc i le puges	buo totun /
10.1 General Characteristics of Open-Channel Flow	561-573	13
10.2 Surface Waves	501-575	15
10.2.1 Wave Speed		
10.2.2 Froude Number Effects		
10.3 Energy Considerations		
10.3.1 Specific Energy		
10.4 Uniform Depth Channel Flow	574-605	32
10.4.1 Uniform Flow Approximations		-
10.4.2 The Chezy and Manning Equations		
10.4.3 Uniform Depth Examples		
10.5 Gradually Varied Flow		
10.5.1 Classification of Surface Shapes		
10.5.2 Examples of Gradually Varied Flows		
10.6 Rapidly Varied Flow		
10.6.1 The Hydraulic Jump		
10.6.2 Sharp-Crested Weirs		
10.6.3 Broad-Crested Weirs		
10.6.4 Underflow Gates		
10.7 Chapter Summary and Study Guide		
Chapter 11 Compressible Flow (pp. 614-678 → 65 pages s	sub-total. 6 sectio	ons out of 8)
11.3 Categories of Compressible Flow	623-628	6
11.4 Isentropic Flow of an Ideal Gas	631-646	16
11.4.2 Converging-Diverging Duct Flow		
11.4.3 Constant Area Duct Flow		
11.5 Non-isentropic Flow of an Ideal Gas	665-678	14
11.5.3 Normal Shock Waves		
11.6 Analogy between Compressible and Open-Channel Flows		
11.7 Two-Dimensional Compressible Flow		
11.8 Chapter Summary and Study Guide		
Chapter 12 Turbomachines (Whole Chapter; pp. 684-736	\rightarrow 53 pages sub-	total. 10
sections out of 10)		
12.1 Introduction	684-736	53
12.2 Basic Energy Considerations		
12.3 Basic Angular Momentum Considerations		
12.4 The Centrifugal Pump		
12.4.1 Theoretical Considerations		
12.4.2 Pump Performance Characteristics		
12.4.3 Net Positive Suction Head (NPSH)		
12.4 4 System Characteristics and Pump Selection		
12.5 Dimensionless Parameters and Similarity Laws		
12.5.1 Special Pump Scaling Laws		
12.5.2 Specific Speed		
12.5.3 Suction Specific Speed		
12.6 Axial-Flow and Mixed-Flow Pump	_	
12.7 Fans	_	
12.8 Turbines	_	
12.8.1 Impulse Turbines	_	
12.8.2 Reaction Turbines	_	
12.9 Compressible Flow Turbomachines	_	
12.9.1 Compressors	_	
12.9.2 Compressible Flow Turbines		

List 1A. (Continued)

Chapter/Section	Page Number	Number of Pages
Chapter 12 Turbomachines (Continued)		
12.10 Chapter Summary and Study Guide	\uparrow	\uparrow
Statistical Summary		
Total Number of Pages Covered by Text (Excluding "]	Problems" Section)	621
Total Numbers of Sections Covered Under All	Chapters	64 out of 102
		Calculus Sections
$%_{\text{Pre-Calculus}} = \left(\frac{\text{Number of Pre-Calculus Sections}}{\text{Total Number of Sections}}\right) (100)$	0%) = $\left(\frac{64}{102}\right)$	(100%) = 62.7%
Total Numbers of Chapters	Covered	10 out of 12
Percentage of Chapters with Pre-Calculus Sections		
$%_{\text{Pre-Calculus}} = \left(\frac{\text{Number of Chapters with Pre}}{\text{Total Number of }}\right)$	- Calculus S Chapters	$\frac{\text{Sections}}{100\%}$
$=\left(\frac{10}{12}\right)(100\%) = 83.3\%$		
Total Number of Pages Covered by Pre-Calculus Portion 317		
$ \frac{\text{Percenta}}{\text{%}_{\text{Pre-Calculus}}} = \left(\frac{\text{Number of Pre - Calculus Pages}}{\text{Total Number of Pages}}\right) (100) $		Calculus Volume $)(100\%) = 51.0\%$