
In this Module, we will learn how to create a sheet metal part wrapping a polyhedron based on an octagonal shape. Some 3D modeling programs have tools for the creation and modification of polyhedrons; for example, 3D Studio MAX owned by Discreet, a subsidiary of Autodesk, the developer of Inventor, provides the Hedra Object tool that can instantly create polyhedrons and polyhedral stars and modify them by changing the \mathbf{P} and \mathbf{Q} values in the Hedra Object tool's dialog window (Figure 8A-1A and Figure $8 A-1 B$); in addition, 3D Studio MAX files can be exported as AutoCAD DWG and/or DXF format files and opened in AutoCAD program as wireframe-based surface models (Figure 8A-1B).

Figure 8A-1B: Modification of Hedra Object model by changing the \mathbf{P} and/or \boldsymbol{Q} values.

Figure 8A-1A: The Hedra Object tool in 3ds MAX.
In this Module, we will learn how to create a 3D solid model of a polyhedron based on an octagonal shape, and then sheet metal parts that are used to wrap the 3D space of this polyhedron.

Figure 8A-1C: Exporting 3D Studio Max files into AutoCAD (top) as surface models (bottom).

Section 1:
 Creating The Derived Part of The Octagon-Based Polyhedron

Step 1: Creating an octagon-based prism extruded from one of the three principal Planes

We will first create a 36-inch deep prism based on an octagonal profile with a 36inch cross-flat length. Launch Inventor, start a new Sheet Metal (in).ipt file under the English tab. "Sketch1" is created by default in the Model panel' XY Plane (the one parallel to your computer's screen); click the Return button to exit the Sketch mode and delete the default sketch1 feature from the Model panel, with the Delete key on the keyboard. Select the YZ Plane in the Model panel and click the Sketch button to start a new sketch; rename it YZ Plane Hex Extrude Sketch in the Model panel; use the Project Geometry tool to project the Center Point onto the sketch for a snap point; use the Polygon and General Dimension tools to draw a 8-sided 36-inch octagon snapped-
centered at the projected Center Point (Figure 8A-2A); click the Return button to exit the YZ Plane Hex Extrude Sketch. Save the file as Tut-Octagonal Polyhedral Body.ipt in a new folder named Tut-Octagonal Polyhedral. Save at each step throughout the entire project. Next, use the Extrude tool with Join as Type, Distance and 36 inch for Extents and the octagon just drawn in the YZ Plane Hex Extrude Sketch as Profile to create the prism, and rename the Extrude feature YZ Plane Hex Extrusion in the Model panel.

Figure 8A-2A: The YZ Plane Hex Extrusion.

Step 2: Cutting the octagonal prism into an octagonal shape from

 the second principal PlaneNext, cut the prism into an octagon-shape body from the XY Plane. Select the XY Plane from the Model panel and click the Sketch button to start a new sketch; and rename it XY Plane Hex Cut Sketch in the Model panel; use the Project Geometry tool to project the Center Point; use the Polygon and General Dimension tools to draw a 8sided 36-inch octagon snapped-centered at the projected Center Point; use the Circle Center Point tool to draw a large circle outside of the octagon, of any convenient size which can enclose the entire 3D model; click the Return button to exit the XY Plane Hex Cut Sketch. Next, use the Extrude tool with Cut as Type, All for Extents, Midplane for Direction and the area between the octagon and the circle in the XY Plane Hex Cut Sketch as Profile to cut the prism; and rename the Extrude feature XY Plane Hex Cut in the Model panel (Figure 8A-2B).

Figure 8A-2B: The XY Plane Hex Cut Sketch (left), the XY Plane Hex Cut Extrude feature (middle); and the resulted 3D model (right).

Step 3: Cutting the octagonal prism into an octagonal shape from the third principal Plane

Next, cut the prism into an octagon-shape body from the XZ Plane. Select the $\mathbf{X Z}$ Plane from the Model panel; click the Sketch button to start a new sketch; and rename it XZ Plane Hex Cut Sketch in the Model panel; use the Project Geometry tool to project the Center Point; use the Polygon and General Dimension tools to draw a 8-sided 36inch octagon snapped-centered at the projected Center Point; use the Circle Center Point tool to draw a large circle outside of the octagon, of any convenient size that can enclose the entire 3D model created so far; click the Return button to exit the XZ Plane Hex Cut Sketch. Next, use the Extrude tool with Cut as Type, All for Extents, Midplane for Direction and the area between the octagon and the circle in the XZ Plane Hex Cut Sketch as Profile to cut the prism; and rename the Extrude feature XZ Plane Hex Cut in the Model panel (Figure 8A-2C). The 3D model of the octagon-based polyhedron is completed and ready to be used as a Derived Part for its Work Surface in an Inventor sheet metal file. The features of the octagon-based polyhedron are listed in the Model panel (Figure 8A-2D). Save the close the file.

Figure 8A-2C: The XY Plane Hex Cut Sketch (left), the XY Plane Hex Cut Extrude feature (middle); and the resulted 3D model (right).

Figure 8A-2D: The features listed in the Model panel.

Section 2:
 Creating The Sheet Metal Parts Wrapping The 3D Space of The OctagonBased Polyhedron

There are two ways to design this sheet metal project, one is to design it as a single-piece sheet metal part through 4 sets of adjacent Face features with Bends, in ordered steps (in each step, one set of adjacent Face features are created with automatic generation of Bend features; and for the $4^{\text {th }}$ set, the profile sketches need to be adjusted so as to allow a 0.001 -inch gap along the gray stripes, as shown in Figure $8 A-3 A$, for the Inventor program to generate the Face and its Bend feature); the other way is to create 4 pieces of partial sheet metal parts in three separate files (as shown in Figure 8A-3B, the top and bottom pieces being identical), and to assemble all pieces in an assembly file afterwards. The second option is more practical due to availability of material sizes and is chosen for this project.

Figure 8A-3A: The creation of a single-piece sheet metal part through 4 ordered steps with 4 sets of adjacent Face features with Bends.

Figure 8A-3B: A more practical design of creating four pieces in three separate files and of assembling them into one file afterwards.

Step 1: Creating the 5-Face partial sheet metal part

Start a new Sheet Metal (in).ipt file under the English tab. "Sketch1" is created by default on the Model panel's XY Plane (the one parallel to your computer's screen); click the Return button to exit and delete the default sketch1 feature from the Model panel, with the Delete key on the keyboard. Select the Derived Component tool from the Features panel; in the Open dialog window that opens up, select the Tut-Octagonal Polyhedral Body.ipt file from the Tut-Octagonal Polyhedral folder; click the Open button; in the Derived Part window opens; select the Body As Work Surface option and click the OK button to place the octagonal polyhedron's 3D Work Surface model into the file (Figure 8A-3C). Save the file as Octagonal Polyhedral Body Face Sheet Metal 5 Piece.ipt in a new folder named Tut-Octagonal Polyhedral. Save at each step throughout the entire project.

Figure 8A-3C: The Derived Component tool (left) and Derived Part window (right).

Next, create the sheet metal Face features extruding outwards from the Work Surface of the Derived Part, by first selecting each work surface for a new sketch and projecting the edges onto the sketch with the Project Geometry tool; and then by using the Face tool to create one Face feature, and then the adjacent one with automatic generation of Bend features.

Select the adjacent work surfaces of the Derived Part's 3D model, click the Sketch button to start new sketches, and use the Project Geometry tool to create relevant Sketch features one after another, as shown in Figure 8A-3D. Notice that four edges (shown in thick black stripes in Figure $8 A-3 E$) of the sketch profiles for two Face features (shown in white in Figure $8 A-3 E$) need to be adjusted so as to allow a 0.001-inch gap along the gray stripes, for the Inventor program to generate the Face and its Bend feature. This task can be accomplished by using the Offset, General Dimension, Extend and Trim tools, as explained in previous Modules. Next, use the Face tool to create the central square-shaped piece first, and all hexagonal pieces with automatic generation of Bend features afterwards (Figure 8A-3F and Figure 8A-3G), outwards from the Work

Surfaces of the Derived Part's 3D model. Rename all Sketch and Face features with specific names, as shown in Figure 8A-3K.

Figure 8A-3D: The face profile sketches.

Figure 8A-3E: Adjustment to two face sketches.

Figure 8A-3F: Creating the first three Face features.

Figure 8A-3H: The Flat Pattern view.

Next, select the outer surface of square Central Face and click the Flat Pattern tool button in the Sheet Metal panel to create the Flat Pattern view (Figure 8A-3H). Notice that by using the Zoom Window tool to zoom in the corner area of the sheet metal part, you might see some irregular cutoff made by Inventor during the creation of the Face features' Bends; we can add "patches" to fill up these imperfect corners, by first using the Project Geometry, Line, Extend, and Trim tools to create a patch sketch on
the outer surfaces of the Face features concerned (Figure 8A-3I); and then by creating a patching Face features (Figure 8A-3J). Save and close the file.

Figure 8A-3I: The patch sketch.

Figure 8A-3J: The patching Face feature.

Figure 8A-3K: The features listed in the Model panel.

Step 2: Creating the 4-face partial sheet metal part
Start a new Sheet Metal (in).ipt file under the English tab. "Sketch1" is created by default in the Model panel's XY Plane (the one parallel to your computer's screen); click the Return button to exit the Sketch1, and delete the default sketch1 feature from the Model panel with the Delete key on the keyboard. Select the Derived Component tool from the Features panel; in the Open window that opens up, select the TutOctagonal Polyhedral Body Face Sheet Metal 5 Piece.ipt file from the Tut-Octagonal Polyhedral folder; click the Open button; the Derived Part window opens; select the Body As Work Surface option and click the OK button to place the 5-piece partial sheet metal part's 3D Work Surface model into the file. Notice that the surfaces of the octagon-based polyhedral model that are already covered by the 5-piece partial sheet metal part are of a darker orange shade. In addition, notice that, as shown in the Model panel (Figure 8A-4A), there are actually 2 Work Surfaces in the Octagonal Polyhedral

Body Face Sheet Metal 5 Piece.ipt Placed Part (the Derived Work Body1 that belongs to the 5-piece sheet metal part, and the Derived Surface1 that belongs to the 3D model of the octagon-base polyhedron in the Tut-Octagonal Polyhedral Body.ipt file). Save the file as Tut-Octagonal Polyhedral Body Face Sheet Metal 4 Piece.ipt in a same Tut-Octagonal Polyhedral folder. Save often at each step throughout the entire project.

Browser Bar	
Model ${ }^{\text {r }}$?
∇	
$\square--\mathcal{S}$ Tut-Octagonal Polyhedral Body Face Sheet Metal 3 Piece.ipt Origin - (o) Tut-Octagonal Polyhedral Body Face Sheet Metal 5 Piece.ipt - \mathcal{A} Derived Work Body1 $-\mathcal{D}$ Derived Surface1 End of Part	

Figure 8A-4A: The Work
 Surfaces of the Placed Part from the TutOctagonal Polyhedral Body Face Sheet Metal 5 Piece.ipt file.

Figure 8A-4B: The face sketches.

Figure 8A-4C: The first 3 Face features.

Figure 8A-4D: Adjusting the $4^{\text {th }}$ face sketch.

Figure 8A-4E: All
Face features created.

Figure 8A-4F: Adding the Flange feature (Edge-Type) to the square Face feature.

Next, create face profile sketches on relevant work surfaces (Figure 8A-4B); create the first 3 Face features (Figure 8A-4C); make adjustments to the bottom face sketch (shown in white) to allow 0.001-inch gaps between the relevant edges of the face (shown as thick black lines in Figure $8 A-4 D$) and the edges of the neighboring Face features; use the Face tool again to create the last Face feature. Next, use the Flange tool to add a Flange feature to the square-shaped Face with Edge as Type in the Extent section (Figure 8A-4G), and four Flange features with 1.00-inch end corner Offset1 and Offset2 as Type in the Extent section (Figure 8A-4H), all with the inner edge of the Face features selected as the Edge in the Shape section, and the Edge direction all pointing inwardly towards the interior of the polyhedron; the Distance is set to 1.00 -inch for all Flange features and the Angle can be measured "on-the-fly" or by first deleting the default value in the text field, then clicking the rightward-pointing triangle at the right end of the Angle text field for a shortcut menu and choosing the Measure Angle option, and click-selecting the surface of the polyhedron and then the relevant sheet metal Face feature's surface (sometimes you need to type 180- at the start of the measured angle's value, as explained in previous Modules). Next, add 0.5 -inch Corner Chamfers to the ends of all Flange features (Figure 8A-4I). The $2^{\text {nd }}$ partial sheet metal part is completed. Click-select the outer surface of the square-shaped Face feature and click the Flat Pattern tool button to create the Flat Pattern view (Figure 8A-4J). Rename all Sketch, Face, Flange and Corner Chamfer features with specific names at each step of their creation. The features of the part are listed in the Model panel (Figure 8A-4K). Save and close the file.

Creating A Sheet Metal Part \& Flat Pattern Wrapping The 3D Space of A Polyhedron

Figure 8A-4H: All Flange features added.

Figure 8A-4G: Adding the 1.0-inch Offsettype Flange to the hexagonal Face feature.

Figure 8A-4J: The Flat Pattern view.
Browser Bar

Figure 8A-4K: The features listed in the Model panel.

Step 2: Creating the 5-face in one stripe partial sheet metal part
Start a new Sheet Metal (in).ipt file under the English tab. "Sketch1" is created by default in the Model panel's XY Plane (the one parallel to your computer's screen); click the Return button to exit and delete the default sketch1 feature from the Model panel with the Delete key on the keyboard. Select the Derived Component tool from the Features panel; in the Open window that opens up, select the Tut-Octagonal Polyhedral Body Face Sheet Metal 4 Piece.ipt file from the Tut-Octagonal Polyhedral folder; click the Open button; the Derived Part window opens; select the Body As Work Surface option and click the OK button to place the 4-piece partial sheet metal part's 3D Work

Surface model into the file (Figure 8A-5A). Notice that the surfaces of the octagon-based polyhedral model already covered by the 5-piece and 4-piece partial sheet metal parts are of a darker orange shade. Save the file as Octagonal Polyhedral Body Face Sheet Metal 1 Stripe.ipt in the same Tut-Octagonal Polyhedral folder. Save often at each step throughout the entire project.

Figure 8A-5A: The Derived Part from the Tut-Octagonal Polyhedral Body Face Sheet Metal 4
Piece.ipt file.

Figure 8A-5D: All Face features completed.

Figure 8A-5B: The relevant face sketches.

Figure 8A-5C: Creating the first Face feature (the end piece).

Figure 8A-5E: Flange and Corner features added.
Next, create face profile sketches on relevant work surfaces (Figure 8A-5B); create the first Face features on the end face sketch (Figure $8 A-5 C$); and the subsequent Face features with automatic creation of Bend features, in a sequential order, from the $1^{\text {st }}$ through the $5^{\text {th }}$ Face features (Figure 8A-5D).

Next, use the Flange tool to add one Flange feature per each of the two squareshaped Face features at the end edge, with Edge as Type in the Extent section of the Flange tool's dialog window; next, add 10 additional Flange features with 1.00 -inch end corner Offset1 and Offset2 as Type in the Extent section for all other edges of all Face features. All Flange features should have the inner edge of the Face features selected as the Edge in the Shape section, and the Edge direction all pointing inwardly towards the interior of the polyhedron; and the Distance of the Flange feature should be set to 1.00 inch and the Angle can be measured "on-the-fly" as explained in the previous section of this Module.

Next, add 0.5-inch Corner Chamfers to the ends of all Flange features (Figure $8 A-5 E$). The $3^{\text {rd }}$ partial sheet metal part is completed. Click-select the outer surface of the central square-shaped end Face feature and click the Flat Pattern tool button to create the Flat Pattern view (Figure $8 A-5 F$). Rename all Sketch, Face, Flange and Corner Chamfer features with specific names at each step of their creation. The features of the part are listed in the Model panel (Figure 8A-5G). Save and close the file.

Figure 8A-5F: Selecting the central squareshaped Face feature for the Flat Pattern projection (left).

Figure 8A-5G: The features listed in the Model panel (right).
Star Ber

Section 3:

Create The Assembly File For All Partial Sheet Metal Parts Wrapping The 3D Space of The Octagon-Based Polyhedron

Start a new Inventor assembly (.iam) file under the English tab; save the file as Octagonal Polyhedral Body Face Sheet Metal Assembly.iam in the same Tut-Octagonal Polyhedral folder. Save often at each step throughout the entire project. Use the Place Component tool to place the 3D models of all Tut-Octagonal Polyhedral Body Face Sheet Metal 1 Stripe.ipt, Tut-Octagonal Polyhedral Body Face Sheet Metal 4 Piece.ipt, and Tut-Octagonal Polyhedral Body Face Sheet Metal 5 Piece.ipt files into the assembly file; and use the Place Constraint tool with Mate as Type and Flush as Solution to mate the XY Plane, YZ Plane and XZ Plane of each of these files with their corresponding Planes in the assembly file, which are listed in the Origin folder of the Model panel.

The 3 pieces are assembled; and the comprehensive coverage of the 3D space of the polyhedron still needs one piece of the Tut-Octagonal Polyhedral Body Face Sheet Metal 4 Piece.ipt file (Figure 8A-6A). Use the Rotate tool to examine this situation. In order to create the missing piece, use the Place Component tool again to place another copy of the Tut-Octagonal Polyhedral Body Face Sheet Metal 4 Piece.ipt file; notice that in the Model panel, the name of the new Placed Part reads Tut-Octagonal Polyhedral Body Face Sheet Metal 4 Piece.ipt:2, indicating that it is the $2{ }^{\text {nd }}$ instance of the Placed Part originating from the same part file. Next, use the Place Constraint tool with Mate as Type and Mate as Solution (Figure 8A-6B) to mate the XZ Plane of the 3D model of the $2^{\text {nd }}$ Placed Part of the Tut-Octagonal Polyhedral Body Face Sheet Metal 4 Piece.ipt with the XZ Plane of the assembly file; next, click the Flush button to select it as Solution type in the Place Constraint dialog window, and mate the XY Plane of the Tut-Octagonal Polyhedral Body Face Sheet Metal 4 Piece.ipt: 2 model with the XY Plane of the assembly file. All 4 pieces are assembled (Figure 8A-6C). The features are listed in the Model panel (Figure 8A-6D).

Figure 8A-6A: One piece missing.

Figure 8A-6B: The Place Constraint tool's dialog window.

Figure 8A-6C: All 4 pieces assembled.

Figure 8A-6D: The features listed in the Model panel.

Browser Ba	区
Model	$?$

Congratulations! You learned in this Module how to create a 3D solid model of an octagon-based polyhedron; as well as sheet metal parts wrapping its 3D space; and you have completed all Modules of learning descriptive geometry with Autodesk Inventor contained in this Hand-On Manual. We will now proceed to the optional Module 9, the very last Module, which explores the way to create a 2D working drawing with a fully dimensioned and notated Flat Pattern view of a sheet metal part.

