

In Module 4A, we will learn how to create 3D solid models of right-axis and oblique-axis pyramid (regular or truncated) in the Autodesk Inventor program, which shall be used as Derived Parts for their Work Surface, in the creation of a sheet metal part wrapping a right or oblique (regular or truncated) pyramid, in Module 5B.

The basic steps in the creation of the 3D model of a regular right-axis pyramid (one with the vertex) are summarized as follow:

- Creating a Sketch with the polygonal profile of the base of the pyramid, using the Project Geometry to project the Center Point onto the Sketch for a snap-point; and using the Polygon tool to draw the polygonal profile centersnapped to the projected Center Point;
- Creating a prism with the polygonal base profile using the Extrude tool with a Distance that equals the height of the pyramid;
- Selecting the top surface of the prism to create a Sketch with the vertex point of the pyramid, using the Project Geometry tool to project the Center Point onto the Sketch as the vertex point;
- Using the Work Plane tool to create a 3-point Work Plane feature with the vertex point and two points from an edge of the pyramid's base;
- Using the Split tool with Split Part as Method and the Work Plane as Split Tool to remove the unneeded volume;
- Using the Circular Pattern tool with the Split feature as Features and the Y Axis as Rotation Axis, to duplicate the Split feature around the prism, and to change the prism into a pyramid.

The basic steps in the creation of the 3D model of an oblique-axis regular pyramid (one with the vertex) are summarized as follow:

- Creating a Sketch with the polygonal profile of the base of the pyramid, using the Project Geometry to project the Center Point onto the Sketch for a snap-point; and using the Polygon tool to draw the polygonal profile centersnapped to the projected Center Point;
- Creating a prism with the polygonal base profile, using the Extrude tool with a Distance that equals the height of the pyramid, and a 0 (degree) Taper, if the vertex point of the pyramid is somewhere within the top surface of the prism to be created without a Taper; or
- Creating a prism with the polygonal base profile, using the Extrude tool with a Distance that equals the height of the prism, and a certain degree (45° for example) Taper, if the vertex point of the pyramid is somewhere outside of the top surface of the prism to be created without a Taper;
- Selecting the top surface of the prism to create a Sketch with the vertex point of the pyramid, using the Project Geometry tool to project the Center Point onto the Sketch as the vertex point; and using the Point, Hole Center tool to create the vertex point of the oblique axis; and using the General Dimension tool to apply linear dimensions between the vertex point and the projected Center Point;
- Using the Work Plane tool several times to create 3-point Work Plane features with the vertex point and two points from edges of the pyramid's base, the number of 3-point Work Plane features equaling the number of edges of the base;
- Using the Split tool several times with Split Part as Method and each of the Work Plane features as Split Tool to remove the unneeded volumes; and to change the prism into an oblique-axis pyramid.

The basic steps in the modification of the 3D model of any regular pyramid into a frustum of pyramid (one with the vertex removed to create a top surface parallel to the base surface) are summarized as follow:

- Selecting the Work Plane tool and choosing the XZ Plane and the vertex point of the pyramid as defining elements to create a Work Plane parallel to the base of the pyramid;
- Selecting the new Work Plane that is parallel to the base of the pyramid, to start a new Sketch; using the Center Point Circle tool to draw a large circle of a convenient size enclosing the visually projected area of the base;
- Using the Extrude tool with Cut as Type, Distance for Extents, the large circle drawn in the last step as Profile, and a downward Direction, to remove the vertex tip of the regular pyramid and to change it into a frustum of pyramid.

The basic steps in the modification of the 3D model of any regular pyramid into a truncated pyramid (one with the vertex removed to create a top surface at an angle relative to the base surface) are summarized as follow:

- Selecting the XY or YZ Plane to start a new Sketch, using a variety of tools such as Project Geometry, Line, Trim, and General Dimension to create a closed shape with appropriate dimensions for truncating the pyramid;
- Using the Extrude tool with Cut as Type, Distance for Extents, the closed shape drawn in the last step as Profile, and Midplane as Direction, to remove the vertex tip of the regular pyramid and to change it into a truncated pyramid.

For a sheet metal project with separate Face panel parts to be assembled, the above procedures are enough for the 3D model to be used as Derived Parts for their Work Surfaces. If the sheet metal project is to be created as a single piece with Bend features, and if the 3D model of the pyramid is a "regular" one with the vertex tip, than the "regular" one must be changed into a virtual "frustum" with the removal of a small but sufficient volume of the vertex tip, using the Extrude tool with Cut as Type, a Distance of less than one inch to one inch or above, depending on the sharpness of the vertex tip, and a profile drawn on a Work Plane feature that is perpendicular to the axis of the pyramid, so as to allow the Bend features associated with the Face features to be created properly. In addition, if it is desirable, then solid metal part in the shape of the removed vertex tip can be designed, fabricated and welded to the installed sheet metal part.

These steps will be demonstrated in the Section 1 and Section 2 of this Module.

Section 1:

Creating A Derived Part File For A Regular Right-Axis Pyramid With A Triangular or Other Polygonal Base

In this part of the Module, we will create a 3D model of a triangle-based pyramid as an example; pyramids with bases of other polygonal shapes (such as four-sided square or rectangle, six-sided hexagon, seven-sided heptagon, and eight-sided octagon, etc.), can be created in similar methods. The step-by-step procedures are explained below.

Step 1: Creating a triangle-based prism

Create a new Sheet Metal (in).ipt file under the English tab; click the Return button to dismiss the default sketch and delete it from the Model panel with the Delete key on the keyboard. Select the XZ Plane and click the Sketch button to start a new sketch; rename the sketch as "Triangle" in the Model panel; use the Project Geometry tool to project the Center Point onto the new sketch; use the Polygon tool with Inscribe option and type 3 for number of sides, to draw a triangle centered at the projected Center Point (Figure 4A-4A); click-select the Horizontal constraint tool and then the base edge line of the triangle (shown red in Figure $4 A-4 B$) to constrain it to a horizontal position (Figure 4A-4C); use the General Dimension tool to apply a 48-inch dimension to the base line (Figure 4A-4D). Click the Return button to exit the Triangle sketch.

Next, use the Extrude tool with Join as Type, 48 (inches) Distance for Extents, and an upward Direction, create an Extrude feature of a triangular prism (Figure 4A4E); and rename it in the Model panel as "Triangular Prism." Press Ctrl+s key combination on the keyboard to save the file; in the Save As window, create a new folder and name it as Tut-Piramid; save the file as Tut-Right Triangular-Base Pyramid.ipt in the new folder. Also, go to the File \rightarrow As A Copy As menu to save other copies as TutOblique Triangular-Base Pyramid.ipt, Tut-Oblique Triangular-Base Pyramid Vertex Out.ipt, and Tut-Oblique Triangular-Base Pyramid Vertex In.ipt, successively, all in the same folder, for additional Sections of this Module.

Figure 4A-4A: Draw the triangle.

Figure 4A-4B: The Horizontal constraint tool.

Figure 4A-4C: The base edge line constrained horizontally.

Figure 4A-4D: Apply a 48-inch dimension.

Figure 4A-4E: Creating the triangular prism.
Step 2: Cutting a pyramidal surface with the Extrude plus Work Plane and Sketch, or Split plus Work Plane tool combination

Next, draw the vertex point of the right regular triangle-based pyramid. Select the top surface of the triangle-based prism; click the Sketch button for a new sketch and rename it "Vertex;" use the Project Geometry tool to project the Center Point onto the sketch, which serves as the vertex point of the triangle-based pyramid; click the Return button to exit the Vertex sketch (Figure 4A-4F).

Next, create a Work Plane feature passing through 3 points (the vertex, and 2 endpoints of any edge line of the base). Click-select the Work Plane tool; move the cursor closer to the left endpoint and then the right endpoint of the base line, click each time when the yellow outlined circle point indicator appears; then move the cursor closer to the vertex point, and click when the red dot point indicator appears; a new light orange Work Plane feature with orange outline and light orange shade appears (Figure 4A-4G); rename it as "Face Cut Plane" in the Model panel.

Figure 4A-4F: The vertex point.

Figure 4A-4G: Creating a 3-point Work Plane for cutting the prism into a pyramid.

Next, cut the prism into a pyramid. Select the Face Cut Plane Work Plane feature and click the Sketch button for a new sketch; use the Center Point Circle tool to draw a large circle enclosing the entire 3D model of the prism (Figure 4A-4H); rename the new sketch "Cut" in the Model panel; click the Return button to exit the sketch mode. Next, select the Extrude tool with Cut as Type, All as Extents and a Direction pointing outward of the prism (Figure 4A-4H), to cut off an inclined surface out of the prism (Figure 4A-4J); rename the new Extrude feature "Face Cut" in the Model panel.

Figure 4A-4H: Using the Cut Sketch feature (left) and the Extrude tool to create the pyramidal surface cut (right).

The alternative of using the Extrude tool with a profile Sketch is to use the Split tool with a Work Plane. Select the Split tool from the Features panel; in the tool's dialog window, click the Split Part button in the Method section; click the Split Tool arrow button and click-select the and click-select the Face Cut Plane Work Plane feature on the screen or from the Model panel; click the Direction buttons in the Remove section to make sure that the red Removal arrow is pointing outwards from the prism; click the OK button to remove the unneeded volume from the prism (Figure 4A4I); and rename the Split feature Face Cut Split in the Model panel. In this case, the inclined surface split off the prism is the same as that created by the Extrude tool with a profile Sketch; in other cases, the two approaches yield different results and offer different advantages, as shown in Figure 4A-4J.

Figure 4A-4I: Using the Face Cut Plane Work Plane feature and the Split tool to create the pyramidal surface cut (left). The resulted prism (right).

Step 3: Removing the remaining excessive volume to change the prism into a pyramid with the Circular Pattern tool

You can repeat the same procedures to cut off the remaining two inclined surfaces and transform the triangle-based prism into a triangle-based regular right pyramid; however, since this is a right pyramid, the faster way is to use the Circular Pattern tool from the Features panel; click-select the tool, in its dialog window, click the Features button and click-select the "Face Cut" Extrude feature (or the "Face Cut Split" feature); next, click the Rotation Axis button and click-select the Y Axis feature from the Model panel’s Origin folder; type 3 ul in the Count text field and 360 (degrees) in the Angle text field; green outlined geometric indicator and blue arrowed circular rotation indicator appear; click the OK button to remove all unneeded volumes from the prism and to change the prism into a pyramid (Figure 4A-4K); rename the Circular Pattern feature " 3 Face Cuts" in the Model window.

Figure 4A-4J: The Extrude tool plus Sketch approach cuts off a volume of a definite depth (under the Distance option) or indefinite depth (under the All option), which is perpendicular to the profile (top). The Split tool plus Work Plane approach removes the entire volume on one side of the Work Plane feature (bottom).

Figure 4A-4K: Using the Circular Pattern tool (left) to complete the creation of the pyramid (Right).

Use the Rotate tool with Common View [SPACE] option to rotate the 3D model to the top view; the vertex of the pyramid is located at the intersection of 3 edge lines each connecting one corner of the base triangle and the vertex point of the pyramid; and these edge lines can be extended the mid points of their opposite edges (Figure 4A-4L), indicating that the pyramid created here is a regular right triangle-based pyramid. Now, save the file; and also, go to the File \rightarrow Save A Copy As menu to save another copy under the name of Tut-Frustum of Right Triangular-Base Pyramid.ipt, and another copy as TutTruncated Right Triangular-Base Pyramid.ipt in the same Tut-Pyramid folder, for further learning in later Sections of this Module.

Figure 4A-4L: The top view of the pyramid.

Figure 4A-4M: Creating the Vertex Cutoff Work Plane.

Step 4: Removing a small volume off the vertex tip to provide corner relief for a singlepiece sheet metal part with Bend features

So far, the 3D model of a regular right triangle-based pyramid has been completed. However, if a single-piece sheet metal part enclosing such a solid is to be created, then a technical factor called "corner relief" in sheet metal design must be taken into consideration. Because of the way sheet metal parts are bended, there needs to be a gap at the vertex point of the pyramid. For this objective, we will cutoff the vertex tip of the pyramid by a depth of three times the thickness of the sheet metal material, or 0.12 in X $3=0.36$ in (the depth depends on many factors, such as the thickness of the sheet metal material, the dihedral angles between congruent lateral Face surfaces, the sharpness of the vertex tip, etc.; through trial-and-errors, this is the minimum depth that works in this case).

First, create a work plane perpendicular to the axis of the pyramid. Since this is a right pyramid, the axis is perpendicular to the base, which is on the XZ Plane; therefore, such Work Plane feature must be parallel to the XZ Plane as well. Select the Work
Plane tool; click-select the vertex point and then the XZ Plane on the 3D model or from the Model panel, a new Work Plane appears (Figure 4A-4M); rename it "Vertex Cutoff Work Plane" in the Model panel. Next, select the Vertex Cutoff Work Plane and click-
select the Sketch tool to start a new sketch; rename the new sketch "Vertex Cut" in the Model Panel, use the Center Point Circle tool to draw a circle of a convenient size centered at the vertex point (Figure 4A-4N); click the Return button to exit the Vertex Cut sketch.

Figure 4A-4N: The Vertex Cut sketch.

Figure 4A-4P: The Extrude tool.

Figure 4A-4Q: The vertex tip cutoff.

Figure 4A-4R: The features listed in the Model panel.

Next, use the Extrude tool with Cut as Type, the circle as Profile, 0.36 Distance for Extents, and a downward Direction (Figure 4A-4P), cut the vertex tip off the pyramid (Figure 4A-4Q); rename this Extrude feature "Vertex Cutoff" in the Model panel. All features of the resulted 3D model are listed in the Model panel (Figure 4A$4 R$). Save and close the file.

Section 2:
 Create a Derived Part File for a Frustum of a Pyramid with a Triangular or Other Polygonal Base

A frustum of any pyramid is one which vertex is chop off by a plane parallel to its base. Open the file Tut-Frustum of Right Triangular-Base Pyramid.ipt from the TutPyramid folder; click-select the Work Plane tool; move the cursor closer to the XZPlane, a red outline of the XZ-Plane and an orange outline of the suggested new work plane appear, click the mouse button once and the XZ-Plane turns blue; move the cursor closer to the vertex point, which turns red, click the mouse button again, and a new Work Plane parallel to one existing plane (the XZ-Plane) and passing through a point (the vertex) is created (Figure 4A-5A). Rename it as "Top Work Plane" in the Model panel. Next, select the "Top Work Plane" and click the Sketch button to start a new sketch; rename it as "Frustum" in the Model panel; use the Center Point Circle tool to draw a circle large enough to enclose the existing 3D model (Figure 4A-5B); click the Return button to exit the Frustum sketch.

Figure 4A-5A: Creating a work plane parallel to an existing plane and passing through a point.

Figure 4A-5B: The frustum cut-off profile.

Next, use the Extrude tool with Cut as Type, 20 (inches) Distance for Extents and a downward Direction, cut the regular triangle-based right pyramid into a frustum (Figure 4A-5C); rename the Extrude feature as "Frustum Cut" in the Model panel. All features of the resulted 3D model are listed in the Model panel (Figure 4A-5D). Next, use the Rotate tool with Common View [SPACE] option to rotate the 3D model to the top view; the shape of the top surface is an offset of the shape of the base surface, with parallel corresponding edge lines (Figure 4A-5E), indicating that this is a frustum of a triangle-based pyramid. Save and close the file.

Figure 4A-5C: Cut the regular pyramid into a frustum.

Figure 4A-5E: The top view.

Figure 4A-5D: The features listed in the Model panel.

Section 3:
 Creating A Derived Part File For A Truncated Right-Axis Pyramid With A Triangular or Other Polygonal Base

Step 1: Creating the truncated pyramid

A truncated pyramid is one which vertex is chop off by a plane inclined to its base. Open the file Tut-Truncated Right Triangular-Base Pyramid.ipt from the TutPyramid folder; click-select the YZ Plane in the Model panel, right-click for the shortcut menu and turn on Visibility (Figure 4A-6A); click the Sketch button to start a new sketch; rename the sketch "Truncation 1" in the Model panel; use the Look At tool to switch the sketch to an orthographic view; use the Project Geometry tool to project the
base edge line onto the sketch (Figure 4A-6B), and use the Line tool to draw an inclined line close to the vertex of the pyramid; draw two horizontal lines and a vertical line from the top and bottom endpoints of the projected base edge line; use the Trim tool to trim off the excessive segments of all lines, so that the sketch on the screen matches Figure $4 A-6 C$; next, select the General Dimension tool, click on the projected base edge line and the endpoint of the inclined line (Figure 4A-6C), and apply a linear dimension of 36 inches (Figure 4A-6D), and an angular dimension of 30° between the base edge line and the inclined line; right-click for the shortcut menu and choose Done to exit the General Dimension tool. Next, use the Trim tool again to trim off all excessive line segments and to leave a clean profile for the truncation cut; click the Return button to exit the Truncation 1 sketch.

Figure 4A-6A:
Selecting the YZ Plane.

Figure 4A-6B: Projecting the base edge line.

Figure 4A-6C: Picking the projected base edge line and the endpoint of the inclined line.

Figure 4A-6D: Applying linear and angular dimensions and trimming off excessive line segments.

Next, use the Extrude tool with Cut as Type, All as Extents and Midplane as Direction to apply a truncation cut to the pyramid (Figure 4A-6E and Figure 4A-6F). Rename the Extrude feature as "Truncation Cut 1" in the Model panel. Use the Rotate tool with the Common View [SPACE] option to rotate the 3D model to the top view;
between the truncated top surface and the base surface, one pair of edges that are perpendicular to the YZ Plane are parallel, but the other two pairs are not; and the shape of the top surface is not an offset of the shape of the base surface, like the one seen in Section 2 of this Module (Figure 4A-6G), indicating that this is a truncated triangle-based pyramid. Save the file.

Figure 4A-6F: The truncated pyramid.

Figure 4A-6G: The top view of the truncated pyramid.

Figure 4A-7B: Editing the dimensions.

Figure 4A-7A: The Show Dimensions option.

Figure 4A-7C:
Updating the $3 D$ model after editing dimensions.

Figure 4A-7D: Comparing the effects of truncating angles on the top view. 20° (left); 5° (right).

Figure 4A-7E: The Suppress Features option.

Step 2: Exploring the effects of changes of height and angle of the truncating profile on the truncated pyramid's 3D model

We will now study the effects of the height and the angle of truncating plane on the top view of the 3D model of pyramids. Switch to an isometric view. Click-select the "Truncation 1" Extrude feature in the Model panel, right-click for the shortcut menu and choose Show Dimensions option (Figure 4A-7A), the sketch and dimensions connected to the Extrude feature appear on the 3D model; double-click the linear and then the angular dimension features, type new values (20 in and 20 deg for linear and angular dimensions respectively, as shown in Figure 4A-7B), then click the green checkmark to apply the change; next, click the Update button in the Command Bar (Figure 4A-7C), the 3D model updates. Next, use the Rotate tool with the Common View [SPACE] option to rotate the 3D model to the top view; the shape of the top surface is enlarged and appears closer to the shape of the base surface (Figure $4 A-7 D$), indicating that a smaller height gives a larger top truncated surface. Next, switch to isometric view again; change the angular dimension to 5 (degrees); and use the Update tool in the Command Bar to update the 3D model again; and rotate the 3D model back to the top view using the Rotate tool with the Common View [SPACE] option; the shape of the truncated top surface looks more "parallel" to the shape of the base surface; and if the angular dimension is changed to 0°, then the truncated pyramid becomes the frustum of a pyramid and the shapes of both top and base surfaces will be exactly offsets of each other, with exactly parallel corresponding edge lines. Hold the Shift key on the keyboard and press the \mathbf{Z} key to undo the changes. Save the file.

Step 3: Learning how to use the Suppress Features and Unsuppress Features options

Next, we will apply a truncation to the pyramid from a profile drawn on the $\mathbf{X Y}$ Plane, which is not perpendicular to any edge of the triangular base of the pyramid. We will first suppress the first truncating feature. Click-select the "Truncation Cut 1" Extrude feature in the Model panel; right-click for the shortcut menu and choose the Suppress Features option (Figure 4A-7E); the regular right triangular-based pyramid without the truncation reappears (Figure 4A-8A). In Inventor, the Suppress Features function temporarily removes targeted and associated features from the 3D model; and after they are "suppressed," the Suppress Features option is changed into Unsuppress Features option in the same shortcut menu, and the suppressed features can be brought back into the 3D model by the Unsuppress Features option.

Select the XY Plane and click the Sketch button to start a new sketch; rename it "Truncation 2" in the Model panel. Switch to orthographic view with the Look At tool; draw a similar truncation profile as shown in Figure 4A-8B; using similar methods as in the last step; click the Return button to exit the Truncation 2 sketch; and apply a similar

Extrude cut to truncate the pyramid (Figure 4A-8C). Name the new Extrude feature "Truncation Cut 2" in the Model panel. Next, use the Rotate tool with the Common View [SPACE] option to rotate the 3D model to the top view; between the shape of the truncated top and the shape of the base surface, no pair of corresponding edges is parallel (Figure 4A-8D).

Next, select the Truncated Cut 2 feature in the Model panel, right-click for the shortcut menu and choose the Suppress Features option to suppress it; next, select the Truncated Cut 1 feature in the Model panel, right-click for the shortcut menu and choose the Unsuppress Features option and to unsuppress it. The isometric view of the model will look like Figure 4A-8E. All features of the model are listed in the Model panel (Figure $4 A-8 F$). Save and close the file.

Figure 4A-8A: Selecting the XY Plane.

Figure 4A-8B: Drawing the truncating profile.

Figure 4A-8C: The new truncated pyramid.

Figure 4A-8D: The top view.

Figure 4A-8E: The last look of the model.

Figure 4A-8F: The new Model panel listing.

Section 5:

Creating A Derived Part File For A Square-Based Regular Right-Axis Pyramid

Step 1: Creating a triangular-based prism
Launch Inventor, start a new Sheet Metal (in).ipt file under English tab. Turn Visibility on for XZ and XY and YZ Planes, plus the Center Point from the Model panel. "Sketch1" is created by default in the Model panel's XY Plane (the one parallel to your computer's screen). Go to View \rightarrow Isometric for better visualization in 3D space; and click the Look At tool button to return to orthographic view and start drawing the cross-section of a regular right prism, which shall be cut into a pyramid in the next step. From the Sketch panel, click-select the Project Geometry tool to project the Center Point onto the sketch first; then select the Polygon tool with Inscribed option to draw a triangle (Figure 4A-9A); use the Horizontal constraint tool to constraint the base line of the triangle to horizontal position (Figure 4A-9B); use the General Dimension tool to apply a 36 -inch dimension to the base line. Click the Return button to exit the Sketch mode. Rename the sketch "Pyramid" in the Model panel. Save the file as Tut-Right Regular Square Pyramid.ipt, inside the Tut-Pyramid folder.

Next, use the Extrude tool with 36 -inch for Distance and Midplane for Direction, complete the 3D prism feature (Figure 4A-9C). Rename the Extrude feature "Triangular Prism" in the Model panel.

Figure 4A-9A: Starting the profile sketch for a regular right prism

Figure 4A-9B: The Horizontal constraint tool.

Figure 4A-9C: The Extrude tool.

Step 2: Cut the triangular-based prism into a rectangular-based pyramid

Next, click-select the YZ Plane (Figure 4A-9D), the Sketch and Look At tool buttons and start a new sketch to draw the cut-off profile transforming the triangular prism into a square-based pyramid; click-select the Project Geometry tool and project the Center Point and the base line of the triangular prism onto the new sketch (Figure $4 A-9 E$); click-select the Polygon tool, choose the Circumscribe option and type 3 in the number of sides text field for a triangle; click on the projected Center Point, move the cursor to the mid point of the projected base line, and click when the green snap indicator appears (Figure $4 A-9 F$) to complete the triangle; next, click-select the Circle center Point tool to draw a circle starting at the projected Center Point with a convenient radius that allows the circle to enclose the entire prism (Figure 4A-9G); next, click the Return button to exit the sketch, and rename the sketch as "Cut" in the Model panel.

Next, select the Extrude tool with Cut as Type, All as Extents and MidPlane as Direction (Figure 4A-9H), and the space between the triangle and the circle as Profile, cut the prism into a square-based regular right pyramid (Figure 4A-9I); rename the Extrude feature as "Pyramidal Cut" in the Model panel. Save the file. Also, go to File \rightarrow Save A Copy As menu to save another copy of the file under the name of TutOblique Square Pyramid, and another copy as Tut-Twice Oblique Square Pyramid.ipt, in the same folder, for further learning in later Sections of this Module. Close the file.

Figure 4A-9D: Start a cut-off profile sketch.

Figure 4A-9F: Draw the triangle.

Figure 4A-9E: Project the base line onto the new sketch

Figure 4A-9G: The cut-off profile.

Figure 4A-9H: Cut the prism into a pyramid.

Figure 4A-9I: The complete regular square-base pyramid.

We have created a 3D model of a square-based regular right-axis pyramid with a sharp vertex at the top. Due to the characteristics of sheet metal material and the way cut metal sheets are bent, no sheet metal part wrapping this pyramidal space can actually create this sharp pointed vertex; instead, a corner relief is needed (Figure 4A-9J); therefore, the actual space the sheet metal part wraps is a frustum of a pyramid, although in the assembly process, extra material can be welded on the vertex and sanded into a sharp corner, but this is not our concern here. Thus, in order to allow the sheet metal part to be created correctly and in a workable way, we will cut a tiny depth of the vertex tip in the derived part, with a cutoff profile sketch drawn on a plane perpendicular to the right axis of the square-based pyramid. The step-by-step procedures are explained in the next paragraphs.

Figure 4A-9J: The sheet metal part wrapping the square-based regular right-axis pyramidal space. The folded part (left); the entire flat pattern (middle); and the vertex area with corner relief (right).

Step 3: Cut off the vertex tip of the rectangular-based pyramid

Click-select the Work Point tool; move the cursor closer to the vertex point; click once at the appearance of the yellow outlined circular point indicator; a light yellowish point appears on the vertex point (Figure 4A-9K), and the feature appears in the Model panel under the name of Work Point1, with a solid blue dot as its symbol (Figure 4A-9L); rename it Vertex Work Point. Next, select the Work Plane tool; click-select the Vertex Work Point (Figure 4A-1M), and then the XZ Plane (Figure 4A-9M), either on the screen or in the Model panel; the new work plane is created; it is perpendicular to the right axis of the pyramid, which coincides with the \mathbf{Y} Axis of the Inventor's digital space and passes through the vertex point (Figure 4A-9N); rename it Vertex Cutoff Work Plane in the Model panel.

Next, select this Vertex Cutoff Work Plane and start a new sketch; draw a circle of any convenient radius approximately centered at the vertex point (Figure 4A-9P); rename the sketch Vertex Cut in the Model panel; click the Return button to exit the Sketch mode.

Figure 4A-9K: The Work Point tool.

Figure 4A-9L: Picking the Vertex Work Point.

Figure 4A-9M: Picking the XZ Plane.

Figure 4A-9N: The Vertex Cutoff Work Plane.

Figure 4A-9P: The Vertex Cut sketch.

Next, use the Extrude toot, with Cut as Type, Distance typed as 0.24 (inch) for Extents, and a downward Direction (Figure 4A-9Q), cut the vertex tip off with the Vertex Cut sketch profile (Figure 4A-9R); rename the Extrude feature Vertex Cut in the Model panel. The value of Distance here is double the intended thickness of the sheet metal material (0.12 inch); this value should be adjusted if needed due to several factors including the dihedral angles between the lateral sheet metal panels if the sheet metal part is a whole piece. Such adjustment can be done from the inside the sheet metal file, as shall be explained in Module 5B. If the pyramidal space is instead wrapped by four separate triangular-shaped sheet metal parts, then corner relieves are not needed and the sheet metal parts can extend all the way to the vertex point. If the part is of small size with a flat pattern that can fit into a single metal sheet, then one-piece design is suitable; if it is of large size which single-piece flat pattern cannot fit into a single metal sheet, then multiple-piece design is a more suitable option.

Figure 4A-9R: The vertex cutoff.

Figure 4A-9Q: The Extrude options.

Section 6:

Creating A Derived Part File For A Regular Square-Based Pyramid With An Axis Oblique In One Direction

In this Section 7 and 7 of the Module, we will learn how to change an existing feature by changing its sketch profile.

Open the Tut-Oblique Square Pyramid, from the same folder. From the Model panel, select the "Cut" sketch and right-click for the shortcut menu and choose Edit Sketch (Figure 4A-10A); select the Wireframe Display mode from the Command Bar (Figure 4A-10B) for better visualization. Select the two angled lines of the triangle profile and press the Delete key on the keyboard to delete them. Select the Project Geometry tool to project the lower-right corner point onto the new sketch for a snap point (Figure $4 A-10 C$), then right-click for the shortcut menu and choose Done to exit the tool; select the Line tool to draw an angled edge line connecting this projected point and the top endpoint of the vertical base line; and draw another angled edge line starting from the projected point and extending out of the vertical base line, at any convenient angle (Figure 4A-10D). Use the Trim tool to trim off the segments of the lines outside of the new triangle and use the General Dimension tool to apply a 24 -inch dimension to the vertical base line (Figure 4A-10E); right-click for the shortcut menu and choose Done to exit the tool (Figure 4A-10F); click the Return or the Update button to exit the sketch mode and update the 3D model. The 3d model of the original right-axis square-based pyramid is changed into a square-based triangular pyramid with an axis oblique in one direction. Go to View \rightarrow Isometric menu to view the new model (Figure 4A-10G). In the Model panel, rename the "Pyramidal Cut" as "Oblique Cut" (Figure 4A-10H). Save and close the file.

Figure 4A-10A: The Model panel.

Figure 4A-10C:
Delete the angled edge lines and project the lowerright corner point.

Figure 4A-10D: Draw two new edge lines.

Figure 4A-10G: The square-based triangular pyramid with an axis oblique in one direction.

Figure 4A-10E: Apply a dimension.

Done [ESC]
Edit Dimension
Previous View +F5
Isometric View
How To...

Figure 4A-10F: The shortcut menu.

Figure 4A-10H: The Model panel.

Section 7:
 Creating A Derived Part File For A Rectangle-Based Pyramid With An Axis Oblique In Two Directions

Open the Tut-Twice Oblique Square Pyramid.ipt file. In the Model panel, rename the "Triangular Prism" Extrude feature as "Oblique Triangle Prism," and the "Pyramid" Sketch feature as "Oblique Triangle;" rename the "Pyramid Cut" Extrude feature as "Twice Oblique Cut" and its dependent "Cut" Sketch as "Twice Oblique" (Figure 4A11A) In the Model panel, select the "Oblique Triangle," right-click for the shortcut menu and select Edit Sketch option (Figure 4A-11B). The screen switches to sketch mode; click-select the Line tool; from the top vertex of the triangle, draw a horizontal construction line to restraint the height; next, click-select the horizontal construction line as well as the two inclined edge lines of the original equilateral triangle, and go to the

Command Bar to change the Style of these lines to Construction (in Inventor, Construction lines in the Sketch features do not participate in the creation of 3D solid features; these three construction lines can be deleted with the Delete key on the keyboard before the completion of Edit Sketch operation is desired); next, use the Line tool to draw an inclined line from the right endpoint of the base line extending beyond the top horizontal construction line; apply an angular dimension of 115° to the angle between this inclined line and the horizontal base line (Figure 4A-11C); click-select the Trim tool and trim off the portion of this inclined line against the top horizontal construction line; next, use the Line tool to draw another inclined line connecting the top endpoint of the first inclined line and the left endpoint of the horizontal base line, using green snap indicators for accuracy while drawing lines. The profile of an oblique triangle with the same height as the original equilateral triangle is completed. Click the Return or the Update button in the Command Bar. The 3D model of a prism with an oblique triangular base appears (Figure 4A-11D). Save the file.

Figure 4A-11A: The new Model panel

Figure 4A-11B: Edit Sketch.

Figure 4A-11D: The oblique triangular prism.

Figure 4A-11F: The twice oblique square-based pyramid.

Figure 4A-11E: The oblique triangle.

The next step is to cut the oblique triangular prism into an oblique square-based pyramid. Select the "Twice Oblique" Sketch feature from the Model panel; right-click for the shortcut menu and select the Edit Sketch option; the screen switches to the Sketch mode; go to the Command Bar to change the Display mode to Wireframe Display for better viewing of the 3D model's geometry; click-select the Look At tool button from the

Command Bar and then the "Twice Oblique" Sketch feature from the Model panel to switch to the normal view of the sketch; delete both inclined side edge lines of the triangle in the original sketch; next, use the Project Geometry tool to project the lowerright corner point of the prism onto the sketch for a snap point; and from this point, use the Line tool to draw two inclined lines to the top endpoint and midpoint of the vertical edge line of the original equilateral triangle profile; an oblique triangle is formed; next, use the trim tool to trim off the lower segment of the vertical edge line that is beyond the oblique triangle (Figure 4A-11E). Click the Return button. The oblique prism is transformed into a square-based pyramid with an axis twice oblique in two directions (Figure 4A-11F).

To see that this square-based pyramid has an axis that is oblique in two directions, click-select the Rotate tool, right-click for the shortcut menu and choose the Common View [SPACE] option (Figure 4A-11G); the Common View cubic symbol appears; click the green arrow along any edge, the arrow turns red (Figure 4A-11H) and the common orthographic view replaces the isometric view (Figure 4A-3I); continue clicking the green arrow on the edges until the top view is seen (Figure 4A-11I), this top view shows that the vertex of the pyramid is located off the center of the square base, in two directions, indicating that the axis of the pyramid is oblique in two directions, or away from the Y-Axis along both X-Axis and Z-Axis. To exit the Rotate tool, right-click and choose Done in the shortcut menu (Figure 4A-11J). Save the file.

If desired, you may open the Tut-Oblique Square Pyramid, and Tut-Right Regular Square Pyramid.ipt files inside the same Tut-Pyramid folder, and perform similar step to make a comparison. In the case of the right square-based pyramid, in the Tut-Right Regular Square Pyramid.ipt file, the vertex of the pyramid is right at the center of the square base, indicating that the axis of the pyramid is straight right up (Figure 4A-1K). In the case of the square-based pyramid with an axis oblique in one direction, in the TutOblique Square Pyramid file (Figure 4A-11L), the vertex of the pyramid is located off the center of the square base, in one direction, indicating that the axis of the pyramid is oblique in one direction, or away from the Y-Axis along the Z-Axis.

Figure 4A-11G: The Rotate tool with Common View
[SPACE] option.

Figure 4A-11H: Switch to orthographic view.

Figure 4A-11J: Exit the Rotate tool.

Figure 4A-11I: The top view of the square-based pyramid with an axis oblique in two directions.

Figure 4A-11K: Right square-based pyramid.

Figure 4A-11L: The top view of the square-based pyramid with an axis oblique in one direction.

Next, we will cut off the vertex tip of the oblique pyramid with a depth along the oblique axis of the pyramid, so as to provide a "corner relief" for the single-piece sheetmetal part, as explained in the previous Section 5 of this Module. In the case of a pyramid with an axis oblique in two directions, the axis is neither coincident nor parallel with any of the \mathbf{X}, \mathbf{Y}, and \mathbf{Z} Axis of the Inventor's digital space; and the plane used to draw the cutoff profile sketch for the vertex tip is not perpendicular to any of the existing $\mathbf{Y Z}, \mathbf{X Z}$, and XY Planes; therefore, hold the Shift key and click-select the $\mathbf{Y Z}, \mathbf{X Z}$, and $\mathbf{X Y}$ Planes in the Model panel, and then right-click for the shortcut menu and uncheck Visibility (Figure 4A-11M), so as to avoid visual confusion by features that are not essential to the task. In order to create the work plane for the cutoff profile sketch, the oblique axis must be first established. The oblique axis passes through the vertex and the center point of the base. Therefore, we need to establish these two points first. The procedures to complete this task are explained as follows. Select the base surface of the oblique pyramid and click-select the Sketch button from the Command Bar to start a new Sketch; use the Project Geometry tool to project the four edge lines and use the Line tool to draw two diagonal construction lines; then use the Point, Hole Center tool to draw a point at the intersection of the two diagonal construction lines (which appears as a cross, as shown in Figure 4A-11P), all with the help of green snap indicators (Figure $4 A-11 N$); rename the sketch Base Center Point Construction in the Model panel; click the Return button to exit the Sketch mode. Next, create two work points; select the Work Point tool; move the cursor closer to the vertex point and at the appearance of the yellow snap indicator, click once to create a work point and rename it Vertex Work Point in the Model panel (Figure 4A-11Q); then move the cursor closer to the point drawn at the intersection of the two diagonal lines on the base, click once to create a work point when the "cross" point symbol turns red, and rename it Base Center Work Point in the Model panel (Figure 4A-11R). Use the Rotate tool to access the vertex point of the pyramid if necessary.

'igure 4A-11M: 'urning Visibility off or all three Planes.

Figure 4A-11N: Selecting the base surface (left); projecting the edge lines and drawing diagonal construction lines.

Figure 4A-11P: picking the point of intersection (left) and creating the Base Center Work Point (right).

Figure 4A-11Q: Creating the Vertex Work Point.

Next, create the work axis passing through the two work points just created. Select the Work Axis tool; click-select the Vertex Work Point and the Base Center Work Point features in the Model panel or on the screen; the orange work axis appears on the screen; rename the new Work Axis1 feature Oblique Work Axis in the Model panel (Figure 4A-11S). Next, create a new work plane that contains both the Oblique Work Axis and the \mathbf{Y} Axis, on which a centerline oblique axis can be drawn. Select the Work Plane tool and click on the Y-Axis and Oblique Work Axis features in the Model pane. A new work plane appears (Figure 4A-11T); rename the new work plane Oblique Axis Work Plane in the Model panel.

Figure 4A-11R: The Base Center Work Point (red cross).

Figure 4A-11S: The Oblique Work Axis through the Vertex Work Point and the Base Center Work Point.

Next, select the Oblique Axis Work Plane and click the Sketch button to start a new sketch; since the oblique axis will be hidden inside the 3D pyramid, go to the Command Bar to the display mode to Wireframe Display for better visibility; use the Line tool to draw a line snapping to the Vertex Work Point and the Base Center Work Point; and go to the Command Bar to change the Style of this line to Centerline for better visualization (Figure 4A-11U); rename the new sketch Oblique Axis Centerline in the Model panel.

Figure 4A-11T: Creating the Oblique Axis Work Plane; selecting the Y Axis and Oblique Work Axis in the Model panel (left); the Oblique Axis Work Plane created (bottom).

Next, create a work plane perpendicular to the Oblique Axis Centerline. Select the Work Plane tool again; move the cursor closer to the Vertex Work Point and click once; then move the cursor closer to the centerline oblique axis just drawn and click once when it turns red (Figure 4A-11V); the new work plane appears on the screen; rename the new work plane feature Perpendicular to Oblique Axis Work Plane in the Model panel.

Figure 4A-11U: The Oblique Axis Centerline sketch drawn on the Oblique Axis Work Plane.

Figure 4A-11V: Creating the Perpendicular to Oblique Axis Work Plane.

Next, use the Rotate tool to rotate the 3D model and view the perpendicular relationship between the Perpendicular to Oblique Axis Work Plane and the Oblique Work Axis; they appear to be perpendicular. Next, click-select the Perpendicular to Oblique Axis Work Plane, and then click the Look At tool button; the orthographic view appears on which centerline oblique axis "disappears" (it turns into a point, or PV, which stands for "point view" in descriptive geometry terminology); this proves that both features are perpendicular to each other (Figure 4A-11W). Next, select the Perpendicular to Oblique Axis Work Plane, and click the Sketch button to start a new sketch; use the Circle Center Point tool to draw a circle with any convenient size and centered at the vertex (Figure 4A-11X); rename the sketch Vertex Cut in the Model panel.

Figure 4A-11W: Investigating the perpendicular relationship between the centerline oblique axis and the Perpendicular to Oblique Axis Work Plane, with

Figure 4A-11X: The Vertex Cut sketch. the Rotate (left) and Look At (right) tools.

Next, use the Extrude tool with Cut as Type; type 0.875 (inch) as Distance for Extents, and a downward Direction to cut off the vertex top of the pyramid; and rename the new Extrude feature Vertex Cutoff in the Model panel (Figure 4A-11Y). The sheet metal part latter designed wrapping this oblique pyramidal space is shown on Figure 4A11 Z and.

Figure 4A-11Y: The Extrude tool settings (left); the cutoff vertex (right); and the features listed in the Model panel (bottom right).

Figure 4A-11Z: The sheet metal part. 3D Folded model (top); 2D flat pattern (bottom).

Section 8:

Creating A Derived Part File For An Oblique Pyramid With A Triangular or Other Polygonal Base Other Than A Square or A Rectangle, With A Vertex At One Corner of The Top Surface

Open the Tut-Oblique Triangular-Base Pyramid.ipt file from the same TutPiramid folder. Click-select the Work Plane tool; move the cursor closer to the left and right endpoints of the frontal base edge line, and the rear corner of the top surface, and click once at each point when the outline yellow circle snap indicator appear; a new work plane appears (Figure 4A-12A); rename it in the Model panel "Cutoff Surface Work Plane." Next, select this plane and click the Sketch button to start a new sketch; use the Circle Center Point tool to draw a circle large enough to enclose the whole prism (Figure 4A-12B); click the Return button to exit the sketch mode and rename the new sketch "Cutoff" in the Model panel. Next, use the Extrude tool with Cut as Type, All as Extents and outwards from the prism as Direction, and the circle as Profile (Figure 4A12C), cut the prism into an oblique triangle-based pyramid (Figure 4A-12D); rename the Extrude feature "Surface Cutoff" in the Model panel (Figure 4A-12F).

Figure 4A-12A: Creating the "Cutoff Surface Work Plane.

Figure 4A-12B: The "Cutoff" sketch.

Figure 4A-12C: The Extrude tool.
Since the vertex is a corner point of the top surface and the base is triangular, no further cuts are needed. To view the geometric relationships of edge lines, surfaces and points in the 3D model, use the Rotate tool with Common View [SPACE] option to rotate the 3D model to the top view; it is obvious that the two angled edges of the top surface overlap their corresponding edges on the base surface; and that the vertical edge is shared by both top and base surfaces (Figure 4A-12E). The features of the 3D model are listed in the Model pane (Figure 4A-12F). Save the file.

Figure 4A-12D: The complete pyramid.

Figure 4A-12E: Rotating the 3D model to the top view. On the top view, two edges of the top surface overlap their corresponding edges of the base surface.

Figure 4A-12F: The resulting Model panel.

Section 9:

Creating A Derived Part File For An Oblique Pyramid With A Triangular or Other Polygonal Base Except A Square Or A Rectangle, With A Vertex Is Outside of The Top Surface

To create an oblique pyramid with a polygonal base other than a square or a rectangle, with a vertex that is outside the top surface of the first extruded prism feature, the first feature of triangular-based prism must be created in such a way that the top surface is larger than the base surface, so that the vertex point can still be located within the 3D body (in other words, the first feature of triangular-based prism); this can be accomplished by creating the first feature of triangular-based prism Extrude feature as a tapered one, not as a regular "straight up" one.

Open the Tut-Oblique Triangular-Base Pyramid Vertex Out.ipt file from the same Tut-Piramid folder. Click-select the Triangular Prism feature from the Model panel; right-click for the shortcut menu and choose Edit Features option; in the Extrude tool dialog window that opens, type 45 (degrees) in the Taper text field (the taper angle needed is proportional to the distance between the vertex points of the oblique pyramid and the projected center point of the base on the plane that contains the vertex point and is parallel to the polygonal base of the pyramid; and trial-and-errors might be needed for determining the angle); a gray taper indicator appears, with an arrow pointing outward of the light green base surface profile, indicating that the top surface will be larger; click the OK button; the regular prism changed to a tapered prism with a much larger top surface
(Figure 4A-13A). Use the Rotate tool with Free Rotate option to rotate the model to a convenient position where both top and base edges can be seen (Figure 4A-13B).

Figure 4A-13A: Change the regular prism into a tapered prism with a larger top surface.

Figure 4A-13B: Rotating the 3D model to a convenient position.

Next, click-select the top surface of the tapered prism, click-select the Sketch tool to start a new sketch for the vertex point; rename the sketch "Vertex" in the Model panel; click the Look At button and then the "Vertex" Sketch feature in the Model panel to switch to the orthographic normal view; switch from Shaded Display to Wireframe Display from the Command Bar, so that the outlines of both the top and base surfaces can be seen; use the Project Geometry tool to project the Center Point onto the sketch; next, click-select the Point, Hole Center tool from the Sketch panel; click once inside the space between the edge lines of the larger top surface and of the smaller base surface (Figure 4A-13C); the vertex point appears as a cross; next, use the General Dimension tool to apply a 20 in (inches) horizontal linear dimension and a 30 in (inches) vertical
linear dimension between the projected Center Point and the vertex point drawn with the Point, Hole Center tool; next, click the Return button to exit the Sketch mode.

Figure 4A-13D: The Cutoff Work Plane.

Figure 4A-13C: The Point, Hole Center tool and the Vertex sketch.

Figure 4A-13E: The "Cutoff 1 " profile sketch.

Figure 4A-13F: Cutting off one surface of the pyramid.

Figure 4A-13G: The completed oblique pyramid.
Next, click-select the Work Plane tool; move the cursor closer to the left and right endpoints of the frontal base edge line, click once at each of the two points when the outline yellow circle snap indicator appear; a new work plane appears; then move the cursor closer to the vertex point on the Vertex Sketch, and click once when the vertex point turns red (Figure 4A-13D); a new work plane is created; rename it in the Model panel "Cutoff Work Plane 1." Select this plane and click the Sketch button to start a new sketch; use the Circle Center Point tool to draw a circle large enough to enclose the whole prism (Figure 4A-13E); click the Return button to exit the sketch mode and rename the new sketch "Cutoff 1" in the Model panel. Next, use the Extrude tool with Cut as Type, All as Extents, outwards from the prism as Direction, and the circle as Profile, cut one surface of the pyramid out of the 3D body of the prism (Figure 4A-13F); rename the Extrude feature "Surface Cutoff 1" in the Model panel. Repeat the same procedures to cut off the remaining two surfaces and complete the oblique pyramid (Figure 4A-13G). Rename each Work Plane, Sketch and Extrude features as shown in Figure 4A-13I. Save the file.

Figure 4A-13H: The top view (left) and the bottom view (right) of the completed oblique prism.

Figure 4A-13I: The Model panel features.

Next, analyze the spatial relationships of surfaces, edges and points by using the Rotate tool with Common View [SPACE] option to rotate the 3D model to the top and bottom views; the top view shows two foreshortened inclined lateral surfaces; and the bottom view shows one foreshortened inclined lateral surface and one true-shape base surface (Figure 4A-10H). Save and close the file.

Section 10:

Creating A Derived Part File For An Oblique Pyramid With A Triangular or Other Polygonal Base Other Than A Square or A Rectangle, With A Vertex Inside of The Top Surface

To create an oblique pyramid with a polygonal base other than a square or a rectangle, with a vertex that is inside the top surface of the first extruded prism feature, the vertex point should be created first on the top surface. Once this step is completed, a combination of Work plane, Sketch and Extrude (with Cut option) can be used to change the prism into an oblique pyramid, as explained in the previous Section 9 of this Module. An alternative method is to use the Work Plane and Split tools, as explained in Section 1 of this Module (page 4A-6).

Open the Tut-Oblique Triangular-Base Pyramid Vertex In.ipt file from the same Tut-Piramid folder. Click-select the top surface of the triangular prism (Figure 4A-14A); click the Sketch button to start a new sketch; rename it "vertex" in the Model panel; click the Look At button to switch the sketch to an orthographic (normal) view; use the Project Geometry tool to project the Center Point onto the Vertex sketch; use the Point, Hole Center tool to draw the vertex point above and to the right of the projected Center Point; use the General Dimensions tool to apply a 8 -inch horizontal linear dimension and a 6 -inch vertical dimension between the vertex point and the projected Center Point (Figure 4A-14B); click the Return button to exit the sketch mode.

Figure 4A-14A:
Selecting the top surface for a new sketch.

Figure 4A-14B: Drawing a vertex point and apply linear dimensions between the vertex and the Center Point.

Figure 4A-14C: Creating the first 3-point cutoff work plane.

Next, click-select the Work Plane tool; move the cursor closer to the left and right endpoints of the frontal base edge line, click once at each of these two points when the outline yellow circle snap indicator appear; then move the cursor closer to the vertex point on the Vertex sketch, and click once when the vertex point turns red (Figure 4A14C); a new Work Plane feature is created; rename it in the Model panel "Cutoff Work Plane 1." Select this plane and click the Sketch button to start a new sketch; use the Circle Center Point tool to draw a circle large enough to enclose the whole prism (Figure 4A-14D); click the Return button to exit the sketch mode and rename the new Sketch feature "Cutoff 1" in the Model panel. Next, use the Extrude tool with Cut as Type, All as Extents, outwards from the prism as Direction, and the circle as Profile, cut one surface of the pyramid out of the 3D body of the prism; rename the Extrude feature "Surface Cutoff 1" in the Model panel (Figure 4A-14E). Use the Work Plane, Sketch, and Extrude tools, repeat the same procedures to cut off the remaining two surfaces and complete the oblique pyramid (Figure 4A-11F).

Next, to see how the oblique axis' vertex affects the top view of the model, select the Look At button and click-select the Vertex Sketch feature in the Model panel (Figure $4 A-14 G$); from the top view, it is obvious that the vertex pulls all edges of the pyramid with it. Rename all remaining Work Plane, Sketch and Extrude features as shown in the Model panel (Figure 4A-14H). Save and close the file.

Figure 4A-14D: The cutoff sketch for an extrude cut.

Figure 4A-14F:
Completing the pyramid.

Figure 4A-14E: Using the Extrude tool.

Figure 4A-14G: The top view

Figure 4A-14H: The Model panel features.

Congratulations! In this somehow lengthy Module with 10 Sections, you have learned the basic methods of creating the 3D models of most, if not all types of right and oblique pyramids, and observed the 3D spatial relationships of surfaces, edge lines and corner points of 3D models in Inventor's 3D digital space.

